908 resultados para EXTREME PRECIPITATION EVENTS
Resumo:
In this paper, reanalysis fields from the ECMWF have been statistically downscaled to predict from large-scale atmospheric fields, surface moisture flux and daily precipitation at two observatories (Zaragoza and Tortosa, Ebro Valley, Spain) during the 1961-2001 period. Three types of downscaling models have been built: (i) analogues, (ii) analogues followed by random forests and (iii) analogues followed by multiple linear regression. The inputs consist of data (predictor fields) taken from the ERA-40 reanalysis. The predicted fields are precipitation and surface moisture flux as measured at the two observatories. With the aim to reduce the dimensionality of the problem, the ERA-40 fields have been decomposed using empirical orthogonal functions. Available daily data has been divided into two parts: a training period used to find a group of about 300 analogues to build the downscaling model (1961-1996) and a test period (19972001), where models' performance has been assessed using independent data. In the case of surface moisture flux, the models based on analogues followed by random forests do not clearly outperform those built on analogues plus multiple linear regression, while simple averages calculated from the nearest analogues found in the training period, yielded only slightly worse results. In the case of precipitation, the three types of model performed equally. These results suggest that most of the models' downscaling capabilities can be attributed to the analogues-calculation stage.
Resumo:
ENGLISH: Intensification of the Azores high pressure cell in mid-year, with concomitant air flow from the Caribbean into the Pacific, is shown to be responsible for a secondary minimum of precipitation observed along the tropical Pacific coast of the Americas, and to have a measurable effect on wind and precipitation several hundred kilometers offshore. SPANISH: La intensificación de la célula de alta presión de las Azores a mediados del año, y la corriente de aire concomitante que entra al Pacífico procedente del Caribe, se demuestra que es la causante de un mínimo secundario de precipitación observado a lo largo de la costa tropical de las Américas en el Pacífico y que tiene un efecto mensurable sobre el viento y la precipitación varios cientos de kilómetros mar afuera. (PDF contains 23 pages.)
Resumo:
Barrier islands are ecosystems that border coastal shorelines and form a protective barrier between continental shorelines and the wave action originating offshore. In addition to forming and maintaining an array of coastal and estuarine habitats of ecological and economic importance, barrier island coastlines also include some of the greatest concentrations of human populations and accompanying anthropogenic development in the world. These islands have an extremely dynamic nature whereby major changes in geomorphology and hydrology can occur over short time periods (i.e. days, hours) in response to extreme episodic storm events such as hurricanes and northeasters. The native vegetation and geological stability of these ecosystems are tightly coupled with one another and are vulnerable to storm-related erosion events, particularly when also disturbed by anthropogenic development. (PDF contains 4 pages)
Resumo:
Attosecond-pulse extreme-ultraviolet (XUV) photoionization in a two-color laser field is investigated. Attosecond pulse trains with different numbers of pulses are examined, and their strong dependence on photoelectronic spectra is found. Single-color driving-laser-field-assisted attosecond XUV photoionization cannot determine the number of attosecond pulses from the photoelectronic energy spectrum that are detected orthogonally to the beam direction and the electric field vector of the linearly polarized laser field. A two-color-field-assisted XUV photoionization scheme is proposed for directly determining the number of attosecond pulses from a spectrum detected orthogonally. (C) 2005 Optical Society of America.
Resumo:
We experimentally demonstrate the generation of an extreme-ultraviolet (XUV) supercontinuum in argon with a two-color laser field consisting of an intense 7 fs pulse at 800 nm and a relatively weak 37 fs pulse at 400 nm. By controlling the relative time delay between the two laser pulses, we observe enhanced high-order harmonic generation as well as spectral broadening of the supercontinuum. A method to produce isolated attosecond pulses with variable width and intensity is proposed. (C) 2008 Optical Society of America.
Resumo:
One of the greatest challenges in science lies in disentangling causality in complex, coupled systems. This is illustrated no better than in the dynamic interplay between the Earth and life. The early evolution and diversification of animals occurred within a backdrop of global change, yet reconstructing the potential role of the environment in this evolutionary transition is challenging. In the 200 million years from the end-Cryogenian to the Ordovician, enigmatic Ediacaran fauna explored body plans, animals diversified and began to biomineralize, forever changing the ocean's chemical cycles, and the biological community in shallow marine ecosystems transitioned from a microbial one to an animal one.
In the following dissertation, a multi-faceted approach combining macro- and micro-scale analyses is presented that draws on the sedimentology, geochemistry and paleontology of the rocks that span this transition to better constrain the potential environmental changes during this interval.
In Chapter 1, the potential of clumped isotope thermometry in deep time is explored by assessing the importance of burial and diagenesis on the thermometer. Eocene- to Precambrian-aged carbonates from the Sultanate of Oman were analyzed from current burial depths of 350-5850 meters. Two end-member styles of diagenesis independent of burial depth were observed.
Chapters 2, 3 and 4 explore the fallibility of the Ediacaran carbon isotope record and aspects of the sedimentology and geochemistry of the rocks preserving the largest negative carbon isotope excursion on record---the Shuram Excursion. Chapter 2 documents the importance of temperature, fluid composition and mineralogy on the delta 18-O min record and interrogates the bulk trace metal signal. Chapter 3 explores the spatial variability in delta 13-C recorded in the transgressive Johnnie Oolite and finds a north-to-south trend recording the onset of the excursion. Chapter 4 investigates the nature of seafloor precipitation during this excursion and more broadly. We document the potential importance of microbial respiratory reactions on the carbonate chemistry of the sediment-water interface through time.
Chapter 5 investigates the latest Precambrian sedimentary record in carbonates from the Sultanate of Oman, including how delta 13-C and delta 34-S CAS vary across depositional and depth gradients. A new model for the correlation of the Buah and Ara formations across Oman is presented. Isotopic results indicate delta 13-C varies with relative eustatic change and delta 34-S CAS may vary in absolute magnitude across Oman.
Chapter 6 investigates the secular rise in delta 18-Omin in the early Paleozoic by using clumped isotope geochemistry on calcitic and phosphatic fossils from the Cambrian and Ordovician. Results do not indicate extreme delta 18-O seawater depletion and instead suggest warmer equatorial temperatures across the early Paleozoic.
Resumo:
Marine stratocumulus clouds are generally optically thick and shallow, exerting a net cooling influence on climate. Changes in atmospheric aerosol levels alter cloud microphysics (e.g., droplet size) and cloud macrophysics (e.g., liquid water path, cloud thickness), thereby affecting cloud albedo and Earth’s radiative balance. To understand the aerosol-cloud-precipitation interactions and to explore the dynamical effects, three-dimensional large-eddy simulations (LES) with detailed bin-resolved microphysics are performed to explore the diurnal variation of marine stratocumulus clouds under different aerosol levels and environmental conditions. It is shown that the marine stratocumulus cloud albedo is sensitive to aerosol perturbation under clean background conditions, and to environmental conditions such as large-scale divergence rate and free tropospheric humidity.
Based on the in-situ Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) during Jul. and Aug. 2011, and A-Train satellite observation of 589 individual ship tracks during Jun. 2006-Dec. 2009, an analysis of cloud albedo responses in ship tracks is presented. It is found that the albedo response in ship tracks depends on the mesoscale cloud structure, the free tropospheric humidity, and cloud top height. Under closed cell structure (i.e., cloud cells ringed by a perimeter of clear air), with sufficiently dry air above cloud tops and/or higher cloud top heights, the cloud albedo can become lower in ship tracks. Based on the satellite data, nearly 25% of ship tracks exhibited a decreased albedo. The cloud macrophysical responses are crucial in determining both the strength and the sign of the cloud albedo response to aerosols.
To understand the aerosol indirect effects on global marine warm clouds, multisensory satellite observations, including CloudSat, MODIS, CALIPSO, AMSR-E, ECMWF, CERES, and NCEP, have been applied to study the sensitivity of cloud properties to aerosol levels and to large scale environmental conditions. With an estimate of anthropogenic aerosol fraction, the global aerosol indirect radiative forcing has been assessed.
As the coupling among aerosol, cloud, precipitation, and meteorological conditions in the marine boundary layer is complex, the integration of LES modeling, in-situ aircraft measurements, and global multisensory satellite data analyses improves our understanding of this complex system.
Resumo:
Confinement of electromagnetic energy into a single well-controlled oscillation of light is very important for generation of intense supercontinuum radiation. We find that the pulse breakup of few-cycle ultrashort laser pulses via resonant propagation effects can achieve this aim. By extracting such pulses and then focusing them to drive the He atoms, about 200 eV intense supercontinuum radiation can be generated, which is capable of supporting similar to 20 attosecond isolated pulse generation.
Resumo:
Metallic glasses have typically been treated as a “one size fits all” type of material. Every alloy is considered to have high strength, high hardness, large elastic limits, corrosion resistance, etc. However, similar to traditional crystalline materials, properties are strongly dependent upon the constituent elements, how it was processed, and the conditions under which it will be used. An important distinction which can be made is between metallic glasses and their composites. Charpy impact toughness measurements are performed to determine the effect processing and microstructure have on bulk metallic glass matrix composites (BMGMCs). Samples are suction cast, machined from commercial plates, and semi-solidly forged (SSF). The SSF specimens have been found to have the highest impact toughness due to the coarsening of the dendrites, which occurs during the semi-solid processing stages. Ductile to brittle transition (DTBT) temperatures are measured for a BMGMC. While at room temperature the BMGMC is highly toughened compared to a fully glassy alloy, it undergoes a DTBT by 250 K. At this point, its impact toughness mirrors that of the constituent glassy matrix. In the following chapter, BMGMCs are shown to have the capability of being capacitively welded to form single, monolithic structures. Shear measurements are performed across welded samples, and, at sufficient weld energies, are found to retain the strength of the parent alloy. Cross-sections are inspected via SEM and no visible crystallization of the matrix occurs.
Next, metallic glasses and BMGMCs are formed into sheets and eggbox structures are tested in hypervelocity impacts. Metallic glasses are ideal candidates for protection against micrometeorite orbital debris due to their high hardness and relatively low density. A flat single layer, flat BMG is compared to a BMGMC eggbox and the latter creates a more diffuse projectile cloud after penetration. A three tiered eggbox structure is also tested by firing a 3.17 mm aluminum sphere at 2.7 km/s at it. The projectile penetrates the first two layers, but is successfully contained by the third.
A large series of metallic glass alloys are created and their wear loss is measured in a pin on disk test. Wear is found to vary dramatically among different metallic glasses, with some considerably outperforming the current state-of-the-art crystalline material (most notably Cu₄₃Zr₄₃Al₇Be₇). Others, on the other hand, suffered extensive wear loss. Commercially available Vitreloy 1 lost nearly three times as much mass in wear as alloy prepared in a laboratory setting. No conclusive correlations can be found between any set of mechanical properties (hardness, density, elastic, bulk, or shear modulus, Poisson’s ratio, frictional force, and run in time) and wear loss. Heat treatments are performed on Vitreloy 1 and Cu₄₃Zr₄₃Al₇Be₇. Anneals near the glass transition temperature are found to increase hardness slightly, but decrease wear loss significantly. Crystallization of both alloys leads to dramatic increases in wear resistance. Finally, wear tests under vacuum are performed on the two alloys above. Vitreloy 1 experiences a dramatic decrease in wear loss, while Cu₄₃Zr₄₃Al₇Be₇ has a moderate increase. Meanwhile, gears are fabricated through three techniques: electrical discharge machining of 1 cm by 3 mm cylinders, semisolid forging, and copper mold suction casting. Initial testing finds the pin on disk test to be an accurate predictor of wear performance in gears.
The final chapter explores an exciting technique in the field of additive manufacturing. Laser engineered net shaping (LENS) is a method whereby small amounts of metallic powders are melted by a laser such that shapes and designs can be built layer by layer into a final part. The technique is extended to mixing different powders during melting, so that compositional gradients can be created across a manufactured part. Two compositional gradients are fabricated and characterized. Ti 6Al¬ 4V to pure vanadium was chosen for its combination of high strength and light weight on one end, and high melting point on the other. It was inspected by cross-sectional x-ray diffraction, and only the anticipated phases were present. 304L stainless steel to Invar 36 was created in both pillar and as a radial gradient. It combines strength and weldability along with a zero coefficient of thermal expansion material. Only the austenite phase is found to be present via x-ray diffraction. Coefficient of thermal expansion is measured for four compositions, and it is found to be tunable depending on composition.
Resumo:
We investigated the effect of cerium oxide on the precipitation of Ag nanoparticles in silicate glass via a femtosecond laser irradiation and successive annealing. Absorption spectra show that Ce3+ ions may absorb part of the laser energy via multiphoton absorption and release free electrons, resulting in an increase of the concentration of Ag atoms and a decrease of the concentration of hole-trapped color centers, which influence precipitation of the Ag nanoparticles. In addition, we found that the formed Ag-0 may reduce Ce4+ ions to Ce3+ ions during the annealing process, which inhibits the growth of the Ag nanoparticles.
Resumo:
4 p.
Resumo:
This letter demonstrates an alternative method to form gallium silicate glass ceramics using high-energy electron irradiation. Compared with glass ceramics obtained from the conventional thermal treatment method, the distribution and crystal sizes of the precipitated Ga2O3 nanoparticles are the same. An advantage of this method is that the spatial distribution of the precipitated nanoparticles can be easily controlled. However, optically active dopants Ni2+ ions do not participate in the precipitation during electron irradiation. (c) 2007 American Institute of Physics.
Resumo:
We theoretically investigate the high-order harmonic generation in a helium atom with a two-color optical field synthesized by an intense 6 fs pulse at 800 nm and a relatively weak 21.3 fs pulse at 400 nm. When the frequency-doubled pulse is properly time shifted with respect to the fundamental pulse, an ultrabroad extreme ultraviolet supercontinuum spectrum with a 148 eV spectral width can be generated which directly creates an isolated 65 as pulse even without phase compensation. We explain this extraordinary phenomenon by analyzing maximum electron kinetic energies at different return times.