1000 resultados para EXPRESSION-INVENTORY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thymidylate synthase (TS), an essential enzyme in DNA synthesis and repair, plays a key role in the events of cell cycle regulation and tumor formation. Here, an investigation was presented about subcellular location and biological function of viral TS from lymphocystis disease virus from China (LCDV-C) in fish cells. Fluorescence microscopy revealed that LCDV-C TS was predominantly localized in the cytoplasm in fish cells. Cell cycle analysis demonstrated that LCDV-C TS promoted cell cycle progression into S and G2/M phase in the constitutive expressed cells. As a result, the cells have a faster growth rate compared with the control cells as revealed by cell growth curves. For foci assay, the TS-expressed cells gave rise to foci 4-5 weeks after incubation. Microscopic examination of the TS-induced foci revealed multilayered growth and crisscross morphology characteristic of transformed cells. Moreover, LCDV-C TS predisposed the transfected cells to acquire an anchorage-independent phenotype and could grow in 0.3% soft agar. So the data reveal LCDV-C TS is sufficient to induce a transformed phenotype in fish cells in vitro and exhibits its potential ability in cell transformation. To our knowledge, it is the first report on viral TS sequences associated with transforming activity. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For goldfish (Carassius auratus), there are many varieties with different eye phenotypes due to artificial selection and adaptive evolution. Dragon eye is a variant eye characterized by a large-size eyeball protruding out of the socket similar to the eye of dragon in Chinese legends. In this study, anatomical structure of the goldfish dragon eye was compared with that of the common eye, and a stretching of the retina was observed in the enlarged dragon eye. Moreover, the homeobox-containing transcription factor Six3 cDNAs were cloned from the two types of goldfish, and the expression patterns were analyzed in both normal eye and dragon eye goldfish. No amino acid sequence differences were observed between the two deduced peptides, and the expression pattern of Six3 protein in dragon eye is quite similar to common eye during embryogenesis, but from 2 days after hatching, ectopic Six3 expression began to occur in the dragon eye, especially in the outer nuclear layer cells. With eye development, more predominant Six3 distribution was detected in the outer nuclear layer cells of dragon eye than that of normal eye, and fewer cell-layers in outer nuclear layer were observed in dragon eye retina than in normal eye retina. The highlight of this study is that higher Six3 expression occurs in dragon eye goldfish than in normal eye goldfish during retinal development of larvae. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TNF receptor associated factor 1 (TRAF1) plays an important role in regulating the TNF signaling and protecting cells from apoptosis. In the present study, a TRAF1 gene has been cloned from grass carp (Ctenopharyngodon idella) by reverse transcription (RT)-PCR and rapid amplification of cDNA ends (RACE). The full-length cDNA is 2235 bp, including a 250 bp 5' UTR (untranslated region), a 1659 bp open reading frame, and a 326 bp 3'UTR. The polyadenylation signal (AATAAA, AATAA) and one mRNA instability motif (AUUUA) were found followed by a poly (A) tail in the 3'UTR. No signal peptide or transmembrane region has been found in the putative amino acids of grass carp TRAF1 (gcTRAF1). The putative amino acids of gcTRAF1 share 72% identity with the homologue in zebrafish. It is characterized by a zinc finger at the N-terminus and a TRAF domain (contains one TRAF-C and one TRAF-N) at the C-terminus. The identity of the TRAF domain among all the TRAF1 homologues in vertebrates varies from 52% to 58%, while the identities of TRAF-C were almost the same as 70%. The recombinant gcTRAF1 has been constructed successfully and expressed in Escherichia coli by using pET-32a expression vector. The polyclonal antibody for rabbit has been successfully obtained. The expression of gcTRAF1 in different organs was examined by real-time quantitative PCR and Western blotting, respectively. It was widely distributed in heart, head kidney, thymus, brain, gill, liver, spleen, and trunk kidney. This is the first report of TRAF1 homologue molecule found in fish. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Midkine (Mdk) genes have been revealed to have different expression patterns in vertebrates and therefore, additional studies on Mdk expression patterns are required in more species. In this study, CagMdkb has been cloned and characterized from a SMART cDNA library of 10-somite stage embryos of Carassius auratus gibelio. Its full length cDNA is 1091 bp and encodes a sequence of 147 amino acids, which shows 97.3% identity to zebrafish Mdkb on the amino acid level. RT-PCR analysis reveals that CagMdkb is first transcribed in gastrula embryos and maintains a relatively stable expression level during subsequent embryogenesis. Western blot analysis reveals a 19 kDa maternal CagMdkb protein band and the zygotic CagMdkb protein is expressed from gastrula stage. At around 10 somite stage, the 19 kDa CagMdkb is processed to another protein band of about 17 kDa, which might be the secreted form with the 21-residue signal peptide removed. With immunofluorescence analysis, maternal CagMdkb protein was found to be localized in each blastamere cell of early embryos. The zygotic CagMdkb positive fluorescence signal was detected from a pair of large neurons at 18-somite stage. At the later stages, CagMdkb protein was also extended to numerous small neurons in the forebrain, midbrain and hindbrain, as well as to nerve fibers in the spinal cord. Co-localization with 3A10 antibody revealed CagMdkb immunoreactivity on developing Mauthner neurons, a member of reticulospinal neurons. In addition, ectopic expression of CagMdkb in early embryos of gibel carp and zebrafish suppressed head formation and CagMdkb function was found to depend on secretory activity. All these findings indicate that CagMdkb plays an important role in neural development during gibel carp embryogenesis and there is functional conservation of Mdkb in fish head formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumor necrosis factor receptor-associated factor 2 (TRAF2) is a crucial component of almost the entire tumor necrosis factor receptor superfamily signaling pathway. In the present study, a TRAF2 gene has been cloned from grass carp (Ctenopharyngodon idella) by reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends. The full-length cDNA is 3162 bp, including a 60 bp 5' untranslated region (UTR), a 1611 bp open reading frame, and a 1491 bp 3' UTR. The polyadenylation signal (AATAAA) and the mRNA instability motifs (ATTTTA, ATTTA) were followed by a poly(A) tail in the 3' UTR. No signal peptide or transmembrane region has been found in the putative amino acids of grass carp TRAF2 (gcTRAF2). Phylogenetic tree analysis clearly showed that gcTRAF2 is nearest to the TRAF2 gene of goldfish. The identity of gcTRAF2 with its homologs in other vertebrates ranges from 56% to 97%. It is characterized by one RING-type signature at the N-terminus, one zinc finger in the middle part, and one conserved TRAF domain consisting of a C-proximal (TRAF-C) subdomain and a N-proximal (TRAF-N) subdomain. The identity of TRAF-C among all TRAF2 homologs in vertebrates varies from 78% to 97%, whereas the identity of TRAF-N ranges from 56% to 100%. The recombinant gcTRAF2 has been expressed in Escherichia coli using pET-32a expression vector. The rabbit anti-gcTRAF2 polyclonal antibody was obtained. The expression of gcTRAF2 in different organs was examined by real-time quantitative polymerase chain reaction and Western blot analysis. It was widely distributed in heart, head kidney, thymus, brain, gill, liver, spleen, and trunk kidney. This is the first report of a TRAF2 homolog molecule in fish.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A short-hairpin RNA (shRNA) expression system, based on T7 RNA polymerase (T7RP) directed transcription machinery, has been developed and used to generate a knock down effect in zebrafish embryos by targeting green fluorescent protein (gfp) and no tail (ntl) mRNA. The vector pCMVT7R harboring T7RP driven by CMV promoter was introduced into zebrafish embryos and the germline transmitted transgenic individuals were screened out for subsequent RNAi application. The shRNA transcription vectors pT7shRNA were constructed and validated by in vivo transcription assay. When pT7shGFP vector was injected into the transgenic embryos stably expressing T7RP, gfp relative expression level showed a decrease of 68% by analysis of fluorescence real time RT-PCR. As a control, injection of chemical synthesized siRNA resulted in expression level of 40% lower than the control when the injection dose was as high as 2 mu g/mu l. More importantly, injection of pT7shNTL vector in zebrafish embryos expressing T7RP led to partial absence of endogenous ntl transcripts in 30% of the injected embryos when detected by whole mount in situ hybridization. Herein, the T7 transcription system could be used to drive the expression of shRNA in zebrafish embryos and result in gene knock down effect, suggesting a potential role for its application in RNAi studies in zebrafish embryos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aerolysin is a toxin (protein in nature) secreted by the strains of Aeromonas spp. and plays all important role in the virulence of Aeromonas strains. It has also found several applications such as for detection of glycosylphosphatidylinositol (GPI)-anchored proteins etc. A. hydrophila is a ubiquitous Gram-negative bacterium which causes frequent harm to the aquaculture. To obtain a significant amount of recombinant aerolysin in the active form, in this study, we expressed the aerolysin in E. Coli Under the control of T7 RNase promoter. The coding region (AerA-W) of the aerA gene of A. hydrophila XS91-4-1. excluding partial coding region of the signal peptide was cloned into the vector pET32a and then transformed into E. coli b121. After optimizing the expression conditions, the recombinant protein AerA-W was expressed in a soluble form and purified using His-Bind resin affinity chromatography. Recombinant aerolysin showed hemolytic activity in the agar diffusive hemolysis test. Western blot analysis demonstrated good antigenicity of the recombinant protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voltage-dependent anion channel (VDAC, also known as mitochondrial porin) is acknowledged to play an important role in stress-induced mammalian apoptosis. In this study, Paralichthys olivaceus VDAC (PoVDAC) gene was identified as a virally induced gene from Scophthalmus Maximus Rhabdovirus (SMRV)-infected flounder embryonic cells (FEC). The full length of PoVDAC cDNA is 1380 bp with an open reading frame of 852 bp encoding a 283 amino acid protein. The deduced PoVDAC contains one alpha-helix, 13 transmembrane beta-strands and one eukaryotic mitochondrial porin signature motif. Constitutive expression of PoVDAC was confirmed in all tested tissues by real-time PCR. Further expression analysis revealed PoVDAC mRNA was upregulated by viral infection. We prepared fish antiserum against recombinant VDAC proteins and detected the PoVDAC in heart lysates from flounder as a 32 kDa band on western blot. Overexpression of PoVDAC in fish cells induced apoptosis. Immunofluoresence localization indicated that the significant distribution changes of PoVDAC have occurred in virus-induced apoptotic cells. This is the first report on the inductive expression of VDAC by viral infection, suggesting that PoVDAC might be mediated flounder antiviral immune response through induction of apoptosis. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complement-mediated killing of pathogens through lytic pathway is an important effector mechanism of innate immune response. C9 is the ninth member of complement components, creating the membrane attack complex (MAC). In the present study, a putative cDNA sequence encoding the 650 amino acids of C9 and its genomic organization were identified in grass carp Ctenopharyngodon idella. The deduced amino acid sequence of grass carp C9 (gcC9) showed 48% and 38.5% identity to Japanese flounder and human C9, respectively. Domain search revealed that gcC9 contains a LDL receptor domain, an EGF precursor domain, a MACPF domain and two TSP domain located in the N-terminal and C-terminal, respectively. Phylogenetic analysis demonstrated that gcC9 is clustered in a same clade with Japanese flounder, pufferfish and rainbow trout C9. The gcC9 gene consists of 11 exons with 10 introns, spacing over approximately 7 kb of genomic sequence. Analysis of gcC9 promoter region revealed the presence of a TATA box and some putative transcription factor such as C/EBP, HSF, NF-AT, CHOP-C, HNF-3B, GATA-2, IK-2, EVI- 1, AP-1, CP2 and OCT-1 binding sites. The first intron region contains C/EBPb, HFH-1 and Oct-1 binding sites. RT-PCR and Western blotting analysis demonstrated that the mRNA and protein of gcC9 gene have similar expression patterns, being constitutively expressed in all organs examined of healthy fish, with the highest level in hepatopancreas. By real-time quantitative RT-PCR analysis, gcC9 transcripts were significantly up-regulated in head kidney, spleen, hepatopancreas and down-regulated in intestine from inactivated fish bacterial pathogen Flavobacterium columnare-stimulated fish, demonstrating the role of C9 in immune response. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cDNA encoding grass carp intelectin was isolated from a head kidney cDNA library, and termed gcIntL. The deduced amino acid sequence of gcIntL consists of 318 amino acids, and about 55% identical and 74% similar to human intelectin, which is a new type of lectin recognizing galactofuranose, and plays a role in the recognition of bacteria-specific components in animal hosts. The gcIntL gene consists of seven exons and six introns, spacing over approximately 3 kb of genomic sequence. Phylogenetic analysis clearly demonstrated that the gcIntL formed a clade with Danio rerio intelectin and 35 kDa serum lectin. By real-time quantitative RT-PCR analysis, gcIntL transcripts were significantly induced in head kidney, trunk kidney, spleen, and intestine from LPS-stimulated fish. RT-PCR and Western blotting analysis demonstrated that the mRNA and protein of gcIntL gene have the same expression pattern, and both were detected in brain, gill, intestine, head kidney, trunk kidney, spleen, and heart. Furthermore, gcIntL protein could be detected in gill, intestine, trunk kidney, head kidney, spleen, heart, and brain including medulla oblongata and optic lobe, as determined by immunohistochemistry. This is the first report of intelectin expression pattern in fish, and of recombinant gcIntL and polyclonal antibody against gcIntL. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sonic hedgehog (Shh), one of important homologous members of the hedgehog (Hh) family in vertebrates, encodes a signaling molecule that is involved in short- or long-range patterning processes during embryogenesis. In zebrafish, maternal activity of Hh was found to be contributing to the formation of primary motoneurons. However, we found that all of the known Hh members were not maternally expressed in zebrafish. In the present study, full-length cDNA of common carp (Cyprinus carpio) Shh (cShh) was gained by degenerate reverse-transcription PCR (RT-PCR) and rapid amplification of cDNA ends. Sequence comparison shows that cShh coding sequence shares 93.4% identity with zebrafish Shh coding sequence, and their corresponding protein sequences have 91.9% similarity. Comparative analysis of Shh genomic sequences and Hh protein sequences from different species revealed that the genomic structures of Hh are conserved from invertebrate to vertebrate. In contrast to zebrafish Shh, cShh transcripts were detectable from one-cell stage by RT-PCR analysis. Whole mount in situ hybridization verified the maternal expression of Shh in common carp, which is, to our knowledge, the first report of that in vertebrates, suggesting that Shh might be responsible for the maternal Hh activity in common carp.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SOX3 has been suggested to play significant roles in gametogenesis and gonad differentiation of vertebrates, but the exact cellular localization evidence is insufficient and controversial. In this study, a protogynous hermaphrodite fish Epinephelus coioides is selected to analyze EcSox3 differential expression and the expression pattern in both processes of oogenesis and spermatogenesis by utilizing the advantages that gonad development undergoes transition from ovary to intersexual gonad and then to testis, and primordial germ cells and different stage cells during oogenesis and spermatogenesis are synchronously observed in the transitional gonads. The detailed and clear immunofluoresence localization indicates that significantly differential expression and dynamic changes of Sox3 occur in the progresses of gametogenesis and sex reversal, and EcSOX3 protein exists in the differentiating primordial germ cells, oogonia, and different stage oocytes of ovaries, and also in the differentiating primordial germ cells and the Sertoli cells of testis. One important finding is that the EcSox3 expression is a significant time point for enterable gametogenesis of primordial germ cells because EcSOX3 is obviously expressed and localized in primordial germ cells. As EcSox3 continues to express, the EcSOX3-positive primordial germ cells develop toward oogonia and then oocytes, whereas when EcSox3 expression is ceased, the EcSOX3-positive primordial germ cells develop toward spermatogonia. Therefore, the current finding of EcSOX3 in the differentiating primordial germ cells again confirms the potential regulatory role in oogenesis and germ cell differentiation. The data further suggest that SOX3, as a transcription factor, might have more important roles in oogenesis than in spermatogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein arginine methyltransferase 1 (PRMT1) is currently thought as an effector to regulate interferon (IFN) signalling. Here Paralichthys olivaceus PRMT1 (PoPRMT1) gene was identified as a vitally induced gene from UV-inactivated Scophthalmus maximus Rhabdovirus (SMRV)-infected flounder embryonic cells (FEC). PoPMRT1 encodes a 341-amino-acid protein that shares the conserved domains including post-I, motif I, II and III. Homology comparisons show that the putative PoPMRT1 protein is the closest to zebrafish PMRT1 and belongs to type I PRMT family (including PRMT1, PRMT2, PRMT3, PRMT4, PRMT6, PRMT8). Expression analyses revealed an extensive distribution of PoPMRT1 in all tested tissues of flounder. In vitro induction of PoPRMT1 was determined in UV-inactivated SMRV-infected FEC cells, and under the same conditions, flounder Mx wash also transcriptionally up-regulated, indicating that an IFN response might be triggered. Additionally, live SMRV infection of flounders induced an increased expression of PoPRMT1 mRNA and protein significantly in spleen, and to a lesser extent in head kidney and intestine. Immunofluorescence analysis revealed a major cyptoplasmic distribution of PoPRMT1 in normal FEC but an obvious increase occurred in nucleus in response to UV-inactivated SMRV. This is the first report on in vitro and in vivo expression of fish PRMT1 by virus infection, suggesting that PoPRMT1 might be implicated in flounder antiviral immune response. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DMRT1 has been suggested to play different roles in sex determination and gonad differentiation, because different expression patterns have been reported among different vertebrates. The groupers, since their gonads first develop as ovary and then reverse into testis, have been thought as good models to study sex differentiation and determination. In this study, we cloned the full-length cDNAs of DMRT] gene from orange-spotted grouper (Epinephelus coioides), and prepared corresponding anti-EcDMRT1] antiserum to study the relationship of DMRT] to sex reversal. One important finding is that the grouper DMRT] is not only differentially expressed in different stage gonads, but also restricted to specific stages and specific cells of spermatogenesis. Grouper DMRT1 protein exists only in spermatogonia, primary spermatocytes and secondary spermatocytes, but not in the supporting Sertoli cells. Moreover, we confirmed that EcSox3 is expressed not only in oogonia and different stage oocytes, but also in Sertoli cells and spermatogonia, and EcSox9 is expressed only in Sertoli cells. The data suggested that grouper DMRT1 might be a more specific sex differentiation gene for spermatogenesis, and play its role at the specific stages from spermatogonia to spermatocytes. In addition, no introns were found in the grouper DMRT1, and no duplicated DMRT1, genes were detected. The finding implicates that the intronless DMRT1 that is able to undergo rapid transcriptional turnover might be a significant gene for stimulating spermatogenesis in the protogynous hermaphroditic gonad. (c) 2006 Published by Elsevier Ireland Ltd.