980 resultados para ELECTRONIC BAND-STRUCTURE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A significant amount of research on the thermodynamic properties of molten alloys is undertaken for obtaining insights into their structure . The partial and integral molar enthalpies, entropies and volumes of mixing provide some general information on the nature and strength of atomic bonds and the distribution of atoms. However, until recently it has been difficult to derive specific quantitative information because the excess entropy of mixing contains configurational , vibrational , electronic , and sometimes magnetic contributions which cannot be easily separated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium dioxide (TiO(2)) films have been deposited on glass and p-silicon (1 0 0) substrates by DC magnetron sputtering technique to investigate their structural, electrical and optical properties. The surface composition of the TiO(2) films has been analyzed by X-ray photoelectron spectroscopy. The TiO(2) films formed on unbiased substrates were amorphous. Application of negative bias voltage to the substrate transformed the amorphous TiO(2) into polycrystalline as confirmed by Raman spectroscopic studies. Thin film capacitors with configuration of Al/TiO(2)/p-Si have been fabricated. The leakage current density of unbiased films was 1 x10(-6) A/cm(2) at a gate bias voltage of 1.5 V and it was decreased to 1.41 x 10(-7) A/cm(2) with the increase of substrate bias voltage to -150 V owing to the increase in thickness of interfacial layer of SiO(2). Dielectric properties and AC electrical conductivity of the films were studied at various frequencies for unbiased and biased at -150 V. The capacitance at 1 MHz for unbiased films was 2.42 x 10(-10) F and it increased to 5.8 x 10(-10) F in the films formed at substrate bias voltage of -150 V. Dielectric constant of TiO(2) films were calculated from capacitance-voltage measurements at 1 MHz frequency. The dielectric constant of unbiased films was 6.2 while those formed at -150 V it increased to 19. The optical band gap of the films decreased from 3.50 to 3.42 eV with the increase of substrate bias voltage from 0 to -150 V. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lanthanide(III) complexes [Ln(pyphen)(acac)(2)(NO3)] (1, 2), [Ln(pydppz)(acac)(2)(NO3)] (3, 4) and [La(pydppz)(anacac)(2)(NO3)] (5), where Ln is La(III) (in 1, 3, 5) and Gd(III) (in 2, 4), pyphen is 6-(2-pyridyl)-1,10-phenanthroline, pydppz is 6-(2-pyridyl)-dipyrido[3,2-a:2',3'-c] phenazine, anacac is anthracenylacetylacetonate and acac is acetylacetonate, were prepared, characterized and their DNA photocleavage activity and photocytotoxicity studied. The crystal structure of complex 2 displays a GdO6N3 coordination. The pydppz complexes 3-5 show an electronic spectral band at similar to 390 nm in DMF. The La(III) complexes are diamagnetic, while the Gd(III) complexes are paramagnetic with seven unpaired electrons. The molar conductivity data suggest 1 : 1 electrolytic nature of the complexes in aqueous DMF. They are avid binders to calf thymus DNA giving K-b in the range of 5.4 10(4)-1.2 x 10(6) M-1. Complexes 3-5 efficiently cleave supercoiled DNA to its nicked circular form in UV-A light of 365 nm via formation of singlet oxygen (O-1(2)) and hydroxyl radical (HO center dot) species. Complexes 3-5 also exhibit significant photocytotoxic effect in HeLa cancer cells giving respective IC50 value of 0.16(+/- 0.01), 0.15(+/- 0.01) and 0.26 +/-(0.02) mu M in UV-A light of 365 nm, while they are less toxic in dark with an IC50 value of >3 mu M. The presence of an additional pyridyl group makes the pydppz complexes more photocytotoxic than their dppz analogues. FACS analysis of the HeLa cells treated with complex 4 shows apoptosis as the major pathway of cell death. Nuclear localization of complex 5 having an anthracenyl moiety as a fluorophore is evidenced from the confocal microscopic studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New complexes, [Ni(HL)(PPh3)]Cl (1), [Pd(L)(PPh3)](2), and [Pd(L)(AsPh3)](3), were synthesized from the reactions of 4-chloro-5-methyl-salicylaldehyde thiosemicarbazone [H2L] with [NiCl2(PPh3)(2)], [PdCl2(PPh3)(2)] and [PdCl2(AsPh3)(2)]. They were characterized by IR, electronic, H-1-NMR spectral data. Further, the structures of the complexes have been determined by single crystal X-ray diffraction. While the thiosemicarbazone coordinated as binegative tridentate (ONS) in complexes 2 and 3, it is coordinated as mono negative tridentate (ONS) in 1. The interactions of the new complexes with calf thymus DNA was examined by absorption and emission spectra, and viscosity measurements. Moreover, the antioxidant properties of the new complexes have also been tested against DPPH radical in which complex 1 exhibited better activity than that of the other two complexes 2 and 3. The in vitro cytotoxicity of complexes 1-3 against A549 and HepG2 cell lines was assayed, and the new complexes exhibited higher cytotoxic activity with lower IC50 values indicating their efficiency in killing the cancer cells even at very low concentrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The W, V, Ce, Zr, Fe, and Cu metal ion substituted nanocrystalline anatase TiO2 was prepared by solution combustion method and characterized by XRD, Raman, BET, EPR, XPS, IR TGA, UV absorption, and photoluminescence measurements. The structural studies indicate that the solid solution formation was limited to a narrow range of concentrations of the dopant ions. The photocatalytic degradation of 4-nitrophenol under UV and solar exposure was investigated with Ti1-xMxO2±δ. The degradation rates of 4-nitrophenol with these catalysts were lesser than the degradation rates of 4-nitrophenol with undoped TiO2 both with UV exposure and solar radiation. However, the photocatalytic activities of most metal ion doped TiO2 are higher than the activity of the commercial TiO2, Degussa P25. The decrease in photocatalytic activity is correlated with decrease in photoluminescence due to electron states of metal ions within the band gap of TiO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show with the aid of first-principles electronic structure calculations that suitable choice of the capping ligands may be an important control parameter for crystal structure engineering of nanoparticles. Our calculations on CdS nanocrystals reveal that the binding energy of model trioctylphosphine molecules on the (001) facets of zincblende nanocrystals is larger compared to that on wurtzite facets. Similarly, the binding energy of model cis-oleic acid is found to be dominant for the (10 (1) over bar0) facets of wurtzite structure. As a consequence, trioctylphosphine as a capping agent stabilizes the zincblende structure while cis-oleic acid stabilizes the wurtzite phase by influencing the surface energy, which has a sizable contribution to the energetics of a nanocrystal. Our detailed analysis suggests that the binding of molecules on the nanocrystalline facets depends on the surface topology of the facets, the coordination of the surface atoms where the capping molecule is likely to attach, and the conformation of the capping molecule.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ferrocene-conjugated reduced Schiff base (Fc-metH) copper(II) complexes of L-methionine and phenanthroline bases, namely, Cu(Fc-met)(B)](NO3), where B is 1,10-phenanthroline (phen in 1), dipyrido3,2-d:2',3'-f]quinoxaline (dpq in 2), dipyrido3,2-a:2',3'-c]phenazine (dppz in 3), and 2-(naphthalen-1-yl)-1H-imidazo4,5-f]1,10]phenanthroline (nip in 4), were prepared and characterized and their photocytotoxicity studied (Fc = ferrocenyl moiety). Complexes Cu(Ph-met)(B)](NO3) of the reduced Schiff base from benzaldehyde and L-methionine (Ph-metH) and B (phen in 5, dppz in 6) were prepared and used as control species. Complexes 1 and 5 were structurally characterized by X-ray crystallography. Complex 1 as a discrete monomer has a CuN3OS core with the thiomethyl group as the axial ligand. Complex 5 has a polymeric structure with a CuN3O2 core in the solid state. Complexes 5 and 6 are formulated as Cu(Ph-met)(B)(H2O)] (NO3) in an aqueous phase based on the mass spectral data. Complexes 1-4 showed the Cu(II)-Cu(I) and Fc(+)-Fc redox couples at similar to 0.0 and similar to 0.5 V vs SCE, respectively, in DMF-0.1 M (Bu4N)-N-n](ClO4). A Cu(II)-based weak d-d band near 600 nm and a relatively strong ferrocenyl band at similar to 450 nm were observed in DMF-Tris-HCl buffer (1:4 v/v). The complexes bind to calf thymus DNA, exhibit moderate chemical nuclease activity forming (OH)-O-center dot radical species, and are efficient photocleavers of pUC19 DNA in visible light of 454, 568, and 647 rim, forming (OH)-O-center dot radical as the reactive oxygen species. They are cytotoxic in HeLa (human cervical cancer) and MCF-7 (human breast cancer) cells, showing an enhancement of cytotoxicity upon visible light irradiation. Significant change in the nuclear morphology of the HeLa cells was observed with 3 in visible light compared to the nonirradiated sample. Confocal imaging using 4 showed its nuclear localization within the HeLa cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose a physics-based simplified analytical model of the energy band gap and electron effective mass in a relaxed and strained rectangular 100] silicon nanowires (SiNWs). Our proposed formulation is based on the effective mass approximation for the nondegenerate two-band model and 4 x 4 Luttinger Hamiltonian for energy dispersion relation of conduction band electrons and the valence band heavy and light holes, respectively. Using this, we demonstrate the effect of the uniaxial strain applied along 100]-direction and a biaxial strain, which is assumed to be decomposed from a hydrostatic deformation along 001] followed by a uniaxial one along the 100]-direction, respectively, on both the band gap and the transport and subband electron effective masses in SiNW. Our analytical model is in good agreement with the extracted data using the extended-Huckel-method-based numerical simulations over a wide range of device dimensions and applied strain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A facile method of solution combustion was used to synthesize a new solid solution Bi2Ce2O7. The structure was determined from powder X-ray diffraction (PXRD) and found to crystallize in the space group Fm (3) over barm with cell parameter a = 5.46936(9) angstrom. The particle sizes varied from 5 to 6 nm. The degradation of cationic dye malachite green (MG) was investigated under solar radiation as the band gap of the material is 2.34 eV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents analysis and design of multilayer ultra wide band (UWB) power splitter suitable for wireless communications. An UWB power splitter is designed in suspended substrate stripline medium. The quarter wave transformer in the conventional Wilkinson power divider is replaced by broadside coupled lines to achieve tight coupling for broadband operation. The UWB power splitter is analyzed using circuit models of coupled lines and full wave simulator. Experimental results of 3dB power splitter designed using the proposed structure have been verified against the results from circuit simulation and full wave simulation. The return loss is better than 12 dB across the band 3.1GHz to 10.6GHz. Size of the power splitter is 30mm× 20mm×6.38mm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact of chemical treatment on the surface morphology and other physical properties of tin monosulphide (SnS) thin films have been investigated. The SnS films treated with selected organic solvents exhibited strong improvement in their crystalline-quality and considerable decrease in electrical resistivity. Particularly, the films treated with chloroform showed very low electrical resistivity of similar to 5 Omega cm and a low optical band gap of 1.81 eV as compared to untreated and treated SnS films with other chemicals. From these studies we realized that the chemical treatment of SnS films has strong impact on their surface morphology and also on other physical properties. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nontrivial electronic topology of a topological insulator is thus far known to display signatures in a robust metallic state at the surface. Here, we establish vibrational anomalies in Raman spectra of the bulk that signify changes in electronic topology: an E-g(2) phonon softens unusually and its linewidth exhibits an asymmetric peak at the pressure induced electronic topological transition (ETT) in Sb2Se3 crystal. Our first-principles calculations confirm the electronic transition from band to topological insulating state with reversal of parity of electronic bands passing through a metallic state at the ETT, but do not capture the phonon anomalies which involve breakdown of adiabatic approximation due to strongly coupled dynamics of phonons and electrons. Treating this within a four-band model of topological insulators, we elucidate how nonadiabatic renormalization of phonons constitutes readily measurable bulk signatures of an ETT, which will facilitate efforts to develop topological insulators by modifying a band insulator. DOI: 10.1103/PhysRevLett.110.107401

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various forms of carbon, especially the nanocarbons, have received considerable attention in recent years. There has also been some effort to investigate borocarbonitrides, BxCyNz, comprising besides carbon, the two elements on either side. Although uniformly homogeneous compositions of borocarbonitrides may be difficult to generate, there have been attempts to prepare them by solid state as well as gas phase reactions. Some of the products so obtained show evidence for the presence of BCN networks. Then, there are composites (G-BN) containing hexagonal BN (h-BN) and graphene (G) domains, G(1-x)(BN)(x), in varying proportions. Nanotubes of BxCyNz have been reported by several workers. The borocarbonitrides exhibit some interesting electronic and gas adsorption properties. Thus, some of the preparations show selective CO2 adsorption. They also exhibit excellent characteristics for supercapacitor applications. In order to understand the nature of these understudied materials, it is necessary to examine the results from first-principles calculations. These calculations throw light on the variation in the band gap of G-BN with the concentration of h-BN, for different geometries of the domains and their boundaries. The possibility of formation of Stone-Wales (SW) defects at the interfaces of graphene and h-BN has been studied and the estimates of the formation energies of SW defects at the interfaces are similar to 4 to 6 eV. The presence of such defects at the interfaces influences the electronic structure near the band gap and the associated properties. For example, adsorption of CH4 and CO2 occurs with significantly stronger binding at the interfacial defects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe the synthesis, crystal structures, and optical absorption spectra of transition metal substituted spiroffite derivatives, Zn2-xMxTe3O8 (M-II = Co, Ni, Cu; 0 < x <= 1.0). The oxides are readily synthesized by solid state reaction of stoichiometric mixtures of the constituent binaries at 620 degrees C. Reitveld refinement of the crystal structures from powder X-ray diffraction (XRD) data shows that the Zn/MO6 octahedra are strongly distorted, as in the parent Zn2Te3O8 structure, consisting of five relatively short Zn/M-II-O bonds (1.898-2.236 angstrom) and one longer Zn/M-II-O bond (2.356-2.519 angstrom). We have interpreted the unique colors and the optical absorption/diffuse reflectance spectra of Zn2-xMxTe3O8 in the visible, in terms of the observed/irregular coordination geometry of the Zn/M-II-O chromophores. We could not however prepare the fully substituted M2Te3O8 (M-II = Co, Ni, Cu) by the direct solid state reaction method. Density Functional Theory (DFT) modeling of the electronic structure of both the parent and the transition metal substituted derivatives provides new insights into the bonding and the role of transition metals toward the origin of color in these materials. We believe that transition metal substituted spiroffites Zn2-xMxTe3O8 reported here suggest new directions for the development of colored inorganic materials/pigments featuring irregular/distorted oxygen coordination polyhedra around transition metal ions.