961 resultados para ELASTIN LOCUS
Resumo:
Olfaction, the sense of smell, has many important functions in humans. Human responses to odors show substantial individual variation. Olfactory receptor genes have been identified and other genes may also influence olfaction. However, the proportion of phenotypic variation in odor response due to genetic variation remains largely unknown. Little is also known about which genes modify specific responses to odors. This study aimed to elucidate genetic and environmental influences on human responses to odors. Individuals from Finnish families (n=146) and Australian (n=413), British (n=163), Danish (n=336), and Finnish (n=399) twins rated intensity and pleasantness of a set of 12 (families) or 6 (twins) odors and tried to identify the odors. In addition, the participants rated their own sense of smell and annoyance experienced with different environmental odors. The odor stimuli of a commercial smell test (The Brief Smell Identification Test; banana, chocolate, cinnamon, gasoline, lemon, onion, paint thinner, pineapple, rose, smoke, soap, and turpentine) were presented in the family study. Based on the results of the family study and a literature survey, a new set of odor stimuli (androstenone, chocolate, cinnamon, isovaleric acid, lemon, and turpentine) was designed for the twin studies. In the family sample, heritabilities of the traits were estimated and underlying genomic regions were searched using a genome-wide linkage scan. In the pooled twin sample, variation in the measured traits was decomposed into genetic and environmental components using quantitative genetic modeling. In addition, associations between nongenetic factors (e.g., sex, age, and smoking) and olfactory-related traits were explored. Suggestive evidence for a genetic linkage for pleasantness of cinnamon at a locus on chromosome 4q32.3 emerged from the family sample. High heritability for the pleasantness of cinnamon was found in the family but not the twin study. Heritability of perceived intensity of androstenone odor was determined to be ~30% in the twin sample. A strong genetic correlation between perceived intensity and pleasantness of androstenone, in the absence of any environmental correlation, indicated that only the genetic correlation explained the phenotypic correlation between the traits (r=-0.27) and that the traits were influenced by an overlapping set of genes. Self-rated olfactory function appeared to reflect the odor annoyance experienced rather than actual olfactory acuity or genetic involvement. Results from nongenetic analyses supported the speculated superiority of females' olfactory abilities, the age-related diminishing of olfactory acuity, and the influences of experience-dependent factors on odor responses. This was the first study to estimate heritabilities and perform linkage screens for individual odors. A genetic effect was detected for only a few responses to specific odors, suggesting the predominance of environmental effects in odor perceptions.
Resumo:
Diet is a major player in the maintenance of health and onset of many diseases of public health importance. The food choice is known to be largely influenced by sensory preferences. However, in many cases it is unclear whether these preferences and dietary behaviors are innate or acquired. The aim of this thesis work was to study the extent to which the individual differences in dietary responses, especially in liking for sweet taste, are influenced by genetic factors. Several traits measuring the responses to sweetness and other dietary variables were applied in four studies: in British (TwinsUK) and Finnish (FinnTwin12 and FinnTwin16) twin studies and in a Finnish migraine family study. All the subjects were adults and they participated in chemosensory measurements (taste and smell tests) and filled in food behavior questionnaires. Further, it was studied, whether the correlations among the variables are mediated by genetic or environmental factors and where in the genome the genes influencing the heritable traits are located. A study of young adult Finnish twins (FinnTwin16, n=4388) revealed that around 40% of the food use is attributable to genetic factors and that the common, childhood environment does not affect the food use even shortly after moving from the parents home. Both the family study (n=146) and the twin studies (British twins, n=663) showed that around half of the variation in the liking for sweetness is inherited. The same result was obtained both by the chemosensory measurements (heritability 41-49%) and the questionnaire variables (heritability 31-54%). By contrast, the intensity perception of sweetness or the responses to saltiness were not influenced by genetic factors. Further, a locus influencing the use-frequency of sweet foods was identified on chromosome 16p. A closer examination of the relationships among the variables based on 663 British twins revealed that several genetic and environmental correlations exist among the different measures of liking for sweetness. However, these correlations were not very strong (range 0.06-0.55) implying that the instruments used measure slightly different aspects of the phenomenon. In addition, the assessment of the associations among responses to fatty foods, dieting behaviors, and body mass index in twin populations (TwinsUK n=1027 and FinnTwin12 n=299) showed that the dieting behaviors (cognitive restraint, uncontrolled eating, and emotional eating) mediate the relationship between obesity and diet. In conclusion, the work increased the understanding of the background variables of human eating behavior. Genetic effects were shown to underlie the variation of many dietary traits, such as liking for sweet taste, use of sweet foods, and dieting behaviors. However, the responses to salty taste were shown to be mainly determined by environmental factors and thus should more easily be modifiable by dietary education, exposure, and learning than sweet taste preferences. Although additional studies are needed to characterize the genetic element located on chromosome 16 that influences the use-frequency of sweet foods, the results underline the importance of inherited factors on human eating behavior.
Resumo:
Japanese isolates of Candidatus Liberibacter asiaticus have been shown to be clearly differentiated by simple sequence repeat (SSR) profiles at four loci. In this study, 25 SSR loci, including these four loci, were selected from the whole-genome sequence and were used to differentiate non-Japanese samples of Ca. Liberibacter asiaticus (13 Indian, 3 East Timorese, 1 Papuan and 8 Floridian samples). Out of the 25 SSR loci, 13 were polymorphic. Dendrogram analysis using SSR loci showed that the clusters were mostly consistent with the geographical origins of the isolates. When single nucleotide polymorphisms (SNPs) were searched around these 25 loci, only the upstream region of locus 091 exhibited polymorphism. Phylogenetic tree analysis of the SNPs in the upstream region of locus 091 showed that Floridian samples were clustered into one group as shown by dendrogram analysis using SSR loci. The differences in nucleotide sequences were not associated with differences in the citrus hosts (lime, mandarin, lemon and sour orange) from which the isolates were originally derived.
High resolution mapping of Dense spike-ar (dsp.ar) to the genetic centromere of barley chromosome 7H
Resumo:
Spike density in barley is under the control of several major genes, as documented previously by genetic analysis of a number of morphological mutants. One such class of mutants affects the rachis internode length leading to dense or compact spikes and the underlying genes were designated dense spike (dsp). We previously delimited two introgressed genomic segments on chromosome 3H (21 SNP loci, 35.5 cM) and 7H (17 SNP loci, 20.34 cM) in BW265, a BC7F3 nearly isogenic line (NIL) of cv. Bowman as potentially containing the dense spike mutant locus dsp.ar, by genotyping 1,536 single nucleotide polymorphism (SNP) markers in both BW265 and its recurrent parent. Here, the gene was allocated by high-resolution bi-parental mapping to a 0.37 cM interval between markers SC57808 (Hv_SPL14)-CAPSK06413 residing on the short and long arm at the genetic centromere of chromosome 7H, respectively. This region putatively contains more than 800 genes as deduced by comparison with the collinear regions of barley, rice, sorghum and Brachypodium, Classical map-based isolation of the gene dsp.ar thus will be complicated due to the infavorable relationship of genetic to physical distances at the target locus.
Resumo:
Assessment of genetic diversity is an essential component in germplasm characterisation and utilisation. In this study the genetic diversity of mango was determined among 254 Mangifera indica L. accessions and related Mangifera species originating from 12 diverse geographic areas using eleven known simple sequence repeat (SSR) markers from mango. A total of 133 alleles were detected, ranging from eight (LMMA12) to 16 (MIAC-5) alleles per locus with a mean value of 12.36 and an average polymorphism information content (PLC) of 0.72. The mean number of alleles (8.45) was highest in the South East Asian accessions (Indonesia/Malesia) and lowest in the accessions from the Philippines (2.55). Diversity analysis divided the accessions into four major nodes broadly representing their geographical origins. The genetic diversity of 'Kensington Pride' was confirmed as being very low and no parents for this cultivar were identified. No association could be established between SSR markers analysed and embryony. Ten synonymous accessions were identified with matching genetic identity with at least one other accession at all SSR loci examined. Twenty-two unique genotypes were identified for 50 trees previously assigned different accession names. The remaining accessions were genetically distinct from each other. This increased understanding of genetic diversity in the Australian National Mango Genebank will assist breeders to better select parents with the potential to contribute desired genes to the progeny and thus more rapidly deliver improved cultivars to industry to meet consumer demand. Crown Copyright (C) 2012 Published by Elsevier B.V. All rights reserved.
Resumo:
We isolated and characterized 21 microsatellite loci in the vulnerable and iconic Australian lungfish, Neoceratodus forsteri. Loci were screened across eight individuals from the Burnett River and 40 individuals from the Pine River. Genetic diversity was low with between one and six alleles per locus within populations and a maximum expected heterozygosity of 0.774. These loci will now be available to assess effective population sizes and genetic structure in N. forsteri across its natural range in South East Queensland, Australia.
Resumo:
Ambrosia beetle fungiculture represents one of the most ecologically and evolutionarily successful symbioses, as evidenced by the 11 independent origins and 3500 species of ambrosia beetles. Here we document the evolution of a clade within Fusarium associated with ambrosia beetles in the genus Euwallacea (Coleoptera: Scolytinae). Ambrosia Fusarium Clade (AFC) symbionts are unusual in that some are plant pathogens that cause significant damage in naive natural and cultivated ecosystems, and currently threaten avocado production in the United States, Israel and Australia. Most AFC fusaria produce unusual clavate macroconidia that serve as a putative food source for their insect mutualists. AFC symbionts were abundant in the heads of four Euwallacea spp., which suggests that they are transported within and from the natal gallery in mandibular mycangia. In a four-locus phylogenetic analysis, the AFC was resolved in a strongly supported monophyletic group within the previously described Cade 3 of the Fusarium solani species complex (FSSC). Divergence-time estimates place the origin of the AFC in the early Miocene similar to 21.2 Mya, which coincides with the hypothesized adaptive radiation of the Xyleborini. Two strongly supported clades within the AFC (Clades A and B) were identified that include nine species lineages associated with ambrosia beetles, eight with Euwallacea spp. and one reportedly with Xyleborus ferrugineus, and two lineages with no known beetle association. More derived lineages within the AFC showed fixation of the clavate (club-shaped) macroconidial trait, while basal lineages showed a mix of clavate and more typical fusiform macroconidia. AFC lineages consisted mostly of genetically identical individuals associated with specific insect hosts in defined geographic locations, with at least three interspecific hybridization events inferred based on discordant placement in individual gene genealogies and detection of recombinant loci. Overall, these data are consistent with a strong evolutionary trend toward obligate symbiosis coupled with secondary contact and interspecific hybridization. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Key message We detected seven QTLs for 100-grain weight in sorghum using an F 2 population, and delimited qGW1 to a 101-kb region on the short arm of chromosome 1, which contained 13 putative genes. Abstract Sorghum is one of the most important cereal crops. Breeding high-yielding sorghum varieties will have a profound impact on global food security. Grain weight is an important component of grain yield. It is a quantitative trait controlled by multiple quantitative trait loci (QTLs); however, the genetic basis of grain weight in sorghum is not well understood. In the present study, using an F2 population derived from a cross between the grain sorghum variety SA2313 (Sorghum bicolor) and the Sudan-grass variety Hiro-1 (S. bicolor), we detected seven QTLs for 100-grain weight. One of them, qGW1, was detected consistently over 2 years and contributed between 20 and 40 % of the phenotypic variation across multiple genetic backgrounds. Using extreme recombinants from a fine-mapping F3 population, we delimited qGW1 to a 101-kb region on the short arm of chromosome 1, containing 13 predicted gene models, one of which was found to be under purifying selection during domestication. However, none of the grain size candidate genes shared sequence similarity with previously cloned grain weight-related genes from rice. This study will facilitate isolation of the gene underlying qGW1 and advance our understanding of the regulatory mechanisms of grain weight. SSR markers linked to the qGW1 locus can be used for improving sorghum grain yield through marker-assisted selection.
Resumo:
Phylogenetic group D extraintestinal pathogenic Escherichia coli (ExPEC), including O15:K52:H1 and clonal group A, have spread globally and become fluoroquinolone-resistant. Here we investigated the role of canine feces as a reservoir of these (and other) human-associated ExPEC and their potential as canine pathogens. We characterized and compared fluoroquinolone-resistant E. coli isolates originally identified as phylogenetic group D from either the feces of hospitalized dogs (n = 67; 14 dogs) or extraintestinal infections (n = 53; 33 dogs). Isolates underwent phylogenetic grouping, random amplified polymorphic DNA (RAPD) analysis, virulence genotyping, resistance genotyping, human-associated ExPEC O-typing, and multi-locus sequence typing. Five of seven human-associated sequence types (STs) exhibited ExPEC-associated O-types, and appeared in separate RAPD clusters. The largest subgroup (16 fecal, 26 clinical isolates) were ST354 (phylogroup F) isolates. ST420 (phylogroup B2); O1-ST38, O15:K52:H1-ST393, and O15:K1-ST130 (phylogroup D); and O7-ST457, and O1-ST648 (phylogroup F) were also identified. Three ST-specific RAPD sub-clusters (ST354, ST393, and ST457) contained closely related isolates from both fecal or clinical sources. Genes encoding CTX-M and AmpC β-lactamases were identified in isolates from five STs. Major human-associated fluoroquinolone-resistant ± extended-spectrum cephalosporin-resistant ExPEC of public health importance may be carried in dog feces and cause extraintestinal infections in some dogs.
Resumo:
The black rot disease of Vitis species and other host genera of Vitacease is caused by Phyllosticta ampelicida and allied taxa which is considered to be a species complex. In this paper, we introduce four new species of Phyllosticta, including two from the P. ampelicida complex, based on a polyphasic characterization including disease symptoms and host association, morphology, and molecular phylogeny. The phylogenetic analysis was conducted based on the ribosomal internal transcribed spacer (ITS) region and a combined multi-locus alignment of the ITS, actin (ACT), partial translation elongation factor 1-alpha (TEF-1), and glyceraldehydes 3-phosphate dehydrogenase (GPDH) gene regions. Our study confirms the phylogenetic distinctions of the four new species, as well as their phenotypic differences with known species in the genus.
Resumo:
Phosphine (PH3) fumigation is the primary method worldwide for controlling insect pests of stored commodities. Over-reliance on phosphine, however, has led to the emergence of strong resistance. Detailed genetic studies previously identified two loci, rph1 and rph2, that interact synergistically to create a strong resistance phenotype. We compared the genetics of phosphine resistance in strains of Rhyzopertha dominica and Tribolium castaneum from India and Australia, countries having similar pest species but widely differing in pest management practices. Sequencing analysis of the rph2 locus, dihydrolipoamide dehydrogenase (dld), identified two structurally equivalent variants, Proline49>Serine (P49S) in one R. dominica strain and P45S in three strains of T. castaneum from India. These variants of the DLD protein likely affect FAD cofactor interaction with the enzyme. A survey of insects from storage facilities across southern India revealed that the P45/49S variant is distributed throughout the region at very high frequencies, in up to 94% of R. dominica and 97% of T. castaneum in the state of Tamil Nadu. The abundance of the P45/49S variant in insect populations contrasted sharply with the evolutionary record in which the variant was absent from eukaryotic DLD sequences. This suggests that the variant is unlikely to provide a strong selective advantage in the absence of phosphine fumigation.
Resumo:
Seed dormancy is a key domestication trait for major crops, which is acquired in long-term systems development processes and enables the survival of plants in adverse natural conditions. It is a complex trait under polygenic control and is affected by endogenous and environmental factors. In the present study, a major seed dormancy QTL in sorghum (Sorghum bicolor (L.) Moench), qDor7, detected previously, was fine mapped using a large, multi-generational population. The qDor7 locus was delimited to a 96-kb region which contains 16 predicted gene models. These results lay a solid foundation for cloning qDor7. In addition, the functional markers tightly linked to the seed dormancy QTL may be used in marker-assisted selection for seed dormancy in sorghum.
Resumo:
Tämän tutkimuksen tarkoitus on selvittää millainen suhde käsitteiden ”aktiivinen” ja ”kontemplatiivinen” välillä vallitsee 1200- ja 1300-lukujen taitteessa eläneen saksalaisen teologin Mestari Eckhartin mystiikanteologiassa. Lisäksi on tarkoitus selvittää mitä tuon suhteen kautta on mahdollista paljastaa Eckhartin mystiikanteologiasta laajemmin. Tutkimuksen metodi on systemaattinen analyysi ja päälähteinä käytetään Eckhartin saksankielisiä saarnoja. Erityisesti analysoidaan Eckhartin Martta-Maria -perikooppia (Lk.10:38–42) käsitteleviä saarnoja Pr.86 ja Pr.2. Lisäksi lähteinä käytetään muita Eckhartin saksankielisiä saarnoja ja muuta tuotantoa siinä määrin kuin niiden mukaan ottaminen auttaa paremmin ymmärtämään saarnojen intentioita. Jo ensimmäisistä kristillisistä vuosisadoista lähtien Luukkaan evankeliumin kertomus Martasta ja Mariasta on ollut aktiivisen ja kontemplatiivisen elämän locus classicus. Siksi tutkimuskysymykseen vastaamiseksi on valittu juuri Eckhartin sitä käsittelevät saarnat. Itse tutkimuskysymyksen valintaan on vaikuttanut puolestaan se, että Eckhart tulkitsee perikooppia häntä edeltävästä tulkintatraditiosta selvästi poikkeavalla tavalla ja nostaa Martan sisaruksista edistyneemmäksi. Tutkimus etenee seuraavalla tavalla. Luvussa 2 avataan käsitteiden ”aktiivinen” ja ”kontemplatiivinen” sisältöä sekä käsitellään kysymystä siitä miten niiden välistä suhdetta on kirkon historiassa tulkittu. Se tapahtuu esittelemällä kolme keskeistä tulkintalinjaa: normaalikirkollinen, monastinen ja mendikanttisääntökuntien tulkinta. Luvussa 3 käydään läpi Eckhartin elämää, tuotantoa ja harhaoppisuustuomiota sekä hänen teologiansa keskeisiä jäsentäviä periaatteita. Koska Eckhart on suomalaiselle yleisölle verrattain tuntematon teologi, aihetta käsitellään hieman laajemmin kuin pro gradu -tukielmassa on yleensä tapana. Luvussa 4 perehdytään Martta-Maria -perikooppiin ja sen pitkään tulkintahistoriaan. Luvussa 5 analysoidaan Eckhartin saarna Pr.86, luvussa 6 Pr.2. Luvussa 7 tutkimuksen tulokset kootaan yhteen. Eckhartin saarnoja analysoimalla paljastuu, että hän tulkitsee aktiivisen ja kontemplatiivisen elämän suhteen häntä edeltävästä traditiosta poikkeavalla tavalla. Eckhartia edeltävänä aikana kontemplatiivisia pyrkimyksiä ja Mariaa oli pidetty kristillisessä kirkossa aktiivista elämää ihailtavampana ja ansiollisempana jo tuhat vuotta. Siihen oli vaikuttanut erityisesti se, että 400-luvulta lähtien aina 1200-luvulle asti luostarit olivat Länsi-Euroopan sivistyksen ja teologian keskuksia. Sen vuoksi juuri monastisia ihanteita – erityisesti kontemplatiivisia pyrkimyksiä Jumalan välittömään katselemiseen – pidettiin pitkään kristillisen elämän ihanteina. Eckhart on kuitenkin osa uutta tulkintatraditiota jossa perinteisen klausuurin rajat pyrittiin laajentamaan luostarin muureista koskemaan koko maailmaa. Tämä uusi tulkintatraditio oli ominaista erityisesti mendikanttisääntökunnille (fransiskaanit ja dominikaanit) sekä begiiniyhteisöille, joissa kontemplatiivinen ja aktiivinen elämä pyrittiin yhdistämään yhdeksi kristilliseksi elämäksi. Tutkimuksessa käy ilmi, että suhteessa laajempiin tulkintatradition linjoihin, Eckhart voidaan liittää luontevasti osaksi näiden sääntökuntien uusia orastavia tulkintoja. Niiden mukaan kristillistä täydellisyyttä ei tavoiteta kääntymällä pois päin maailmasta vaan sitä kohti. Sen on kuitenkin tarkoitus tapahtua niin, että aktiivisuus maailmassa nousee kontemplatiivisesta elämänmuodosta käsin. Toisaalta tutkimuksessa paljastuu myös, että Eckhart menee vielä edellä mainittuja uusia tulkintojakin pidemmälle. Mendikanttisääntökunnissa kontemplatiivisuus säilytti yleensä vielä jonkinlaisen ensisijaisuuden aktiivisuuteen nähden, siihen valmistavana ja sen mahdollistavana vaiheena. Eckhart saarnaa kuitenkin niiden täydellisen ykseyden ja samanaikaisuuden puolesta. Hänelle täydellisyyttä edustaa Betanian sisaruksista Martta joka on ”neitsyt-vaimo”, koskematon ja puhdas, mutta joka kuitenkin samalla synnyttää. Neitsyyden ja vaimouden täydellisen samanaikaisuuden korostaminen nousee puolestaan Eckhartin voimakkaasta sitoutumisesta uusplatoniseen metafysiikkaan. Eckhartin ontologia on ”dynaamista ontologiaa”, jossa kaikki ymmärretään Jumalan yliajalliseksi emanaatioksi. Tulkitsemalla mm. Proklosta, Eckhart esittää, että kaikki luotu on olemassa ensisijaisesti ja täydellisenä ikuisuudessa syntyvässä Pojassa ja vain formaalisesti ja vajavaisella tavalla havaittavassa todellisuudessa. Kristillinen täydellisyys on Eckhartille paluuta tuohon varsinaiseen olemiseen ikuisuudessa syntyvässä Pojassa. Paluu tapahtuu irrottautumalla (abegescheiden) kuvista (bilde) eli hyväksymällä, että Jumala ei ole missään käsitteissä, eikä häntä tavoiteta samoin kuin olemassa olevat asiat tavoitetaan. Sikäli kun ihminen riisutaan riippuvuudestaan kuvista, sikäli hän murtautuu (durchbrechen) takaisin siihen perustaan (grunt) jossa Poika ikuisesti syntyy. Perustasta käsin ihmisen on puolestaan mahdollista synnyttää sellaista aktiivisuutta ja toimintaa, joka ei ole itsekkyyden ja egon tahraamaa suorittamista ja kaupankäyntiä. Tutkimuksessa käy ilmi myös se, kuinka keskeinen rooli ymmärryksen (intellectus) kategorialla on kuvista luopumisen prosessissa ja Jumalan kaltaisuuden realisoitumisessa ihmisessä. Juuri ymmärtämisaktin (intelligere) puolesta ihminen on Eckhartin mukaan eniten Jumalan kaltainen ja osa Jumalan ikuisuudessa tapahtuvaa emanaatiota.
Resumo:
Microsatellite markers have demonstrated their value for performing paternity exclusion and hence exploring mating patterns in plants and animals. Methodology is well established for diploid species, and several software packages exist for elucidating paternity in diploids; however, these issues are not so readily addressed in polyploids due to the increased complexity of the exclusion problem and a lack of available software. We introduce polypatex, an r package for paternity exclusion analysis using microsatellite data in autopolyploid, monoecious or dioecious/bisexual species with a ploidy of 4n, 6n or 8n. Given marker data for a set of offspring, their mothers and a set of candidate fathers, polypatex uses allele matching to exclude candidates whose marker alleles are incompatible with the alleles in each offspring–mother pair. polypatex can analyse marker data sets in which allele copy numbers are known (genotype data) or unknown (allelic phenotype data) – for data sets in which allele copy numbers are unknown, comparisons are made taking into account all possible genotypes that could arise from the compared allele sets. polypatex is a software tool that provides population geneticists with the ability to investigate the mating patterns of autopolyploids using paternity exclusion analysis on data from codominant markers having multiple alleles per locus.
Resumo:
Co-stimulatory signals are essential for the activation of naïve T cells and productive immune response. Naïve T cells receive first, antigen-specific signal through T cell receptor. Co-stimulatory receptors provide the second signal which can be either activating or inhibitory. The balance between signals determines the outcome of an immune response. CD28 is crucial for T cell activation; whereas cytotoxic T lymphocyte associated antigen 4 (CTLA4) mediates critical inhibitory signal. Inducible co-stimulator (ICOS) augments cytokine expression and plays role in immunoglobulin class switching. Programmed cell death 1 (PDCD1) acts as negative regulator of T cell proliferation and cytokine responses. The co-stimulatory receptor pathways are potentially involved in self-tolerance and thus, they provide a promising therapeutic strategy for autoimmune diseases and transplantation. The genes encoding CD28, CTLA4 and ICOS are located adjacently in the chromosome region 2q33. The PDCD1 gene maps further, to the region 2q37. CTLA4 and PDCD1 are associated with the risk of a few autoimmune diseases. There is strong linkage disequilibrium (LD) on the 2q33 region; the whole gene of CD28 exists in its own LD block but CTLA4 and the 5' part of ICOS are within a same LD block. The 3' part of ICOS and PDCD1 are in their own separate LD blocks. Extended haplotypes covering the 2q33 region can be identified. This study focuses on immune related conditions like coeliac disease (CD) which is a chronic inflammatory disease with autoimmune features. Immunoglobulin A deficiency (IgAD) belongs to the group of primary antibody deficiencies characterised by reduced levels of immunoglobulins. IgAD co-occurs often with coeliac disease. Renal transplantation is needed in the end stage kidney diseases. Transplantation causes strong immune response which is tried to suppress with drugs. All these conditions are multifactorial with complex genetic background and multiple environmental factors affecting the outcome. We have screened ICOS for polymorphisms by sequencing the exon regions. We detected 11 new variants and determined their frequencies in Finnish population. We have measured linkage disequilibrium on the 2q33 region in Finnish as well as other European populations and observed conserved haplotypes. We analysed genetic association and linkage of the co-stimulatory receptor gene region aiming to study if it is a common risk locus for immune diseases. The 2q33 region was replicated to be linked to coeliac disease in Finnish population and CTLA4-ICOS haplotypes were found to be associated with CD and IgAD being the first non-HLA risk locus common for CD and immunodeficiencies. We also showed association between ICOS and the outcome of kidney transplantation. Our results suggest new evidence for CTLA4-ICOS gene region to be involved in susceptibility of coeliac disease. The earlier published contradictory association results can be explained by involvement of both CTLA4 and ICOS in disease susceptibility. The pattern of variants acting together rather than a single polymorphism may confer the disease risk. These genes may predispose also to immunodeficiencies as well as decreased graft survival and delayed graft function. Consequently, the present study indicates that like the well established HLA locus, the co-stimulatory receptor genes predispose to variety of immune disorders.