900 resultados para Dynamic range
Resumo:
The advances made within the aviation industry over the past several decades have significantly improved the availability, affordability and convenience of air travel and have been greatly beneficial in both social and economic terms. Air transport has developed into an irreplaceable service being relied on by millions of people each day and as such airports have become critical elements of national infrastructure to facilitate the movement of people and goods. As components of critical infrastructure (CI), airports are integral parts of a national economy supporting regional as well as national trade, commercial activity and employment. Therefore, any disruption or crisis which impacts the continuity of operations at airports can have significant negative consequences for the airport as a business, for the local economy and other nodes of transport infrastructure as well as for society. Due to the highly dynamic and volatile environment in which airports operate in, the aviation industry has faced many different challenges over the years ranging from terrorist attacks such as September 11, to health crises such as the SARS epidemic to system breakdowns such as the recent computer system outage at Virgin Blue Airlines in Australia. All these events have highlighted the vulnerability of airport systems to a range of disturbances as well as the gravity and widespread impact of any kind of discontinuity in airport functions. Such incidents thus emphasise the need for increasing resilience and reliability of airports and ensuring business continuity in the event of a crisis...
Resumo:
This document describes large, accurately calibrated and time-synchronised datasets, gathered in controlled environmental conditions, using an unmanned ground vehicle equipped with a wide variety of sensors. These sensors include: multiple laser scanners, a millimetre wave radar scanner, a colour camera and an infra-red camera. Full details of the sensors are given, as well as the calibration parameters needed to locate them with respect to each other and to the platform. This report also specifies the format and content of the data, and the conditions in which the data have been gathered. The data collection was made in two different situations of the vehicle: static and dynamic. The static tests consisted of sensing a fixed ’reference’ terrain, containing simple known objects, from a motionless vehicle. For the dynamic tests, data were acquired from a moving vehicle in various environments, mainly rural, including an open area, a semi-urban zone and a natural area with different types of vegetation. For both categories, data have been gathered in controlled environmental conditions, which included the presence of dust, smoke and rain. Most of the environments involved were static, except for a few specific datasets which involve the presence of a walking pedestrian. Finally, this document presents illustrations of the effects of adverse environmental conditions on sensor data, as a first step towards reliability and integrity in autonomous perceptual systems.
Resumo:
Teachers in inclusive early education classrooms face competing pressures that are highlighted as children transition from play-based settings into formal school. Their challenge is to engage in pedagogical practice that caters for the complex range of school entrants. Yet the existing literature reports on transition challenges for separate groups of children rather than on shared needs or processes within diverse class populations. This study addressed this gap by investigating practices that supported transition in three Australian sites in which the populations represented different types of pedagogic challenge. Four themes regarding inclusion and transition were identified from a synthesis of the literature and applied to three cases. Results indicated that teachers adopted a range of approaches framed by the visibility of diversity, by classroom and school context and by the teachers’ professional transition in enacting changing policies. The results suggest that competing demands are balanced through dynamic, contextually framed strategies of relevance to both ECEC and schools.
Resumo:
The objective of this paper is to explore the relationship between dynamic capabilities and different types of online innovations. Building on qualitative data from the publishing industry, our analysis revealed that companies that had relatively strong dynamic capabilities in all three areas (sensing, seizing and reconfiguration) seem to produce innovations that combine their existing capabilities on either the market or the technology dimension with new capabilities on the other dimension thus resulting in niche creation and revolutionary type innovations. Correspondingly, companies with a weaker or more one-sided set of dynamic capabilities seem to produce more radical innovations requiring both new market and technological capabilities. The study therefore provides an empirical contribution to the emerging work on dynamic capabilities through its in-depth investigation of the capabilities of the four case firms, and by mapping the patterns between the firm's portfolio of dynamic capabilities and innovation outcomes.
Resumo:
This thesis developed a method for real-time and handheld 3D temperature mapping using a combination of off-the-shelf devices and efficient computer algorithms. It contributes a new sensing and data processing framework to the science of 3D thermography, unlocking its potential for application areas such as building energy auditing and industrial monitoring. New techniques for the precise calibration of multi-sensor configurations were developed, along with several algorithms that ensure both accurate and comprehensive surface temperature estimates can be made for rich 3D models as they are generated by a non-expert user.
Resumo:
Emotions are inherently social, and are central to learning, online interaction and literacy practices (Shen, Wang, & Shen, 2009). Demonstrating the dynamic sociality of literacy practice, we used e-motion diaries or web logs to explore the emotional states of pre-service high school teachers’ experiences of online learning activities. This is because the methods of communication used by university educators in online learning and writing environments play an important role in fulfilling students’ need for social interaction and inclusion (McInnerney & Roberts, 2004). Feelings of isolation and frustration are common emotions experienced by students in many online learning environments, and are associated with the success or failure of online interactions and learning (Su, et al., 2005). The purpose of the study was to answer the research question: What are the trajectories of pre-service teachers’ emotional states during online learning experiences? This is important because emotions are central to learning, and the current trend toward Massive Open Online Courses (MOOCs) needs research about students’ emotional connections in online learning environments (Kop, 2011). The project was conducted with a graduate class of 64 high school science pre-service teachers in Science Education Curriculum Studies in a large Australian university, including males and females from a variety of cultural backgrounds, aged 22-55 years. Online activities involved the students watching a series of streamed live lectures for the first 5 weeks providing a varied set of learning experiences, such as viewing science demonstrations (e.g., modeling the use of discrepant events). Each week, students provided feedback on learning by writing and posting an e-motion diary or web log about their emotional response. Students answered the question: What emotions did you experience during this learning experience? The descriptive data set included 284 online posts, with students contributing multiple entries. Linguistic appraisal theory, following Martin and White (2005), was used to regroup the 22 different discrete emotions reported by students into the six main affect groups – three positive and three negative: unhappiness/happiness, insecurity/security, and dissatisfaction/satisfaction. The findings demonstrated that the pre-service teachers’ emotional responses to the streamed lectures tended towards happiness, security, and satisfaction within the typology of affect groups – un/happiness, in/security, and dis/satisfaction. Fewer students reported that the streamed lectures triggered negative feelings of frustration, powerlessness, and inadequacy, and when this occurred, it often pertained to expectations of themselves in the forthcoming field experience in classrooms. Exceptions to this pattern of responses occurred in relation to the fifth streamed lecture presented in a non-interactive slideshow format that compressed a large amount of content. Many students responded to the content of the lecture rather than providing their emotional responses to this lecture, and one student felt “completely disengaged”. The social practice of online writing as blogs enabled the students to articulate their emotions. The findings primarily contribute new understanding about students' wide range of differing emotional states, both positive and negative, experienced in response to streamed live lectures and other learning activities in higher education external coursework. The is important because the majority of previous studies have focused on particular negative emotions, such as anxiety in test taking. The research also highlights the potentials of appraisal theory for studying human emotions in online learning and writing.
Resumo:
Low voltage distribution feeders with large numbers of single phase residential loads experience severe current unbalance that often causes voltage unbalance problems. The addition of intermittent generation and new loads in the form of roof top photovoltaic generation and electric vehicles makes these problems even more acute. In this paper, an intelligent dynamic residential load transfer scheme is proposed. Residential loads can be transferred from one phase to another phase to minimize the voltage unbalance along the feeder. Each house is supplied through a static transfer switch with three-phase input and single-phase output connection. The main controller, installed at the transformer will observe the power consumption in each load and determine which house(s) should be transferred from one phase to another in order to keep the voltage unbalance in the feeder at a minimum. The efficacy of the proposed load transfer scheme is verified through MATLAB and PSCAD/EMTDC simulations.
Resumo:
X-ray diffraction structure functions for water flowing in a 1.5 mm diameter siphon in the temperature range 4 – 63 °C were obtained using a 20 keV beam at the Australian Synchrotron. These functions were compared with structure functions obtained at the Advanced Light Source for a 0.5 mm thick sample of water in the temperature range 1 – 77 °C irradiated with an 11 keV beam. The two sets of structure functions are similar, but there are subtle differences in the shape and relative position of the two functions suggesting a possible differences between the structure of bulk and siphon water. In addition, the first structural peak (Q0) for water in a siphon, showed evidence of a step-wise increase in Q0 with increasing temperature rather than a smoothly varying increase. More experiments are required to investigate this apparent difference.
Resumo:
This paper presents a study done into the effectiveness of using local acceleration measurements vs. remote angle measurements in providing stabilising control via SVCs following large disturbances. The system studied was an analogue of the Queensland-New South Wales Interconnection (QNI) and involved the control of an existing Static Var Compensators (SVC) at Sydney West. This study is placed in the context of wide area controls for large systems using aggregated models for groups of machines.
Resumo:
My practice-led research explores and maps workflows for generating experimental creative work involving inertia based motion capture technology. Motion capture has often been used as a way to bridge animation and dance resulting in abstracted visuals outcomes. In early works this process was largely done by rotoscoping, reference footage and mechanical forms of motion capture. With the evolution of technology, optical and inertial forms of motion capture are now more accessible and able to accurately capture a larger range of complex movements. The creative work titled “Contours in Motion” was the first in a series of studies on captured motion data used to generating experimental visual forms that reverberate in space and time. With the source or ‘seed’ comes from using an Xsens MVN - Inertial Motion Capture system to capture spontaneous dance movements, with the visual generation conducted through a customised dynamics simulation. The aim of the creative work was to diverge way from a standard practice of using particle system and/or a simple re-targeting of the motion data to drive a 3d character as a means to produce abstracted visual forms. To facilitate this divergence a virtual dynamic object was tether to a selection of data points from a captured performance. The proprieties of the dynamic object were then adjusted to balance the influences from the human movement data with the influence of computer based randomization. The resulting outcome was a visual form that surpassed simple data visualization to project the intent of the performer’s movements into a visual shape itself. The reported outcomes from this investigation have contributed to a larger study on the use of motion capture in the generative arts, furthering the understanding of and generating theories on practice.
Resumo:
This paper presents a new method to determine feeder reconfiguration scheme considering variable load profile. The objective function consists of system losses, reliability costs and also switching costs. In order to achieve an optimal solution the proposed method compares these costs dynamically and determines when and how it is reasonable to have a switching operation. The proposed method divides a year into several equal time periods, then using particle swarm optimization (PSO), optimal candidate configurations for each period are obtained. System losses and customer interruption cost of each configuration during each period is also calculated. Then, considering switching cost from a configuration to another one, dynamic programming algorithm (DPA) is used to determine the annual reconfiguration scheme. Several test systems were used to validate the proposed method. The obtained results denote that to have an optimum solution it is necessary to compare operation costs dynamically.
Resumo:
Many model-based investigation techniques, such as sensitivity analysis, optimization, and statistical inference, require a large number of model evaluations to be performed at different input and/or parameter values. This limits the application of these techniques to models that can be implemented in computationally efficient computer codes. Emulators, by providing efficient interpolation between outputs of deterministic simulation models, can considerably extend the field of applicability of such computationally demanding techniques. So far, the dominant techniques for developing emulators have been priors in the form of Gaussian stochastic processes (GASP) that were conditioned with a design data set of inputs and corresponding model outputs. In the context of dynamic models, this approach has two essential disadvantages: (i) these emulators do not consider our knowledge of the structure of the model, and (ii) they run into numerical difficulties if there are a large number of closely spaced input points as is often the case in the time dimension of dynamic models. To address both of these problems, a new concept of developing emulators for dynamic models is proposed. This concept is based on a prior that combines a simplified linear state space model of the temporal evolution of the dynamic model with Gaussian stochastic processes for the innovation terms as functions of model parameters and/or inputs. These innovation terms are intended to correct the error of the linear model at each output step. Conditioning this prior to the design data set is done by Kalman smoothing. This leads to an efficient emulator that, due to the consideration of our knowledge about dominant mechanisms built into the simulation model, can be expected to outperform purely statistical emulators at least in cases in which the design data set is small. The feasibility and potential difficulties of the proposed approach are demonstrated by the application to a simple hydrological model.
Resumo:
Covertly tracking mobile targets, either animal or human, in previously unmapped outdoor natural environments using off-road robotic platforms requires both visual and acoustic stealth. Whilst the use of robots for stealthy surveillance is not new, the majority only consider navigation for visual covertness. However, most fielded robotic systems have a non-negligible acoustic footprint arising from the onboard sensors, motors, computers and cooling systems, and also from the wheels interacting with the terrain during motion. This time-varying acoustic signature can jeopardise any visual covertness and needs to be addressed in any stealthy navigation strategy. In previous work, we addressed the initial concepts for acoustically masking a tracking robot’s movements as it travels between observation locations selected to minimise its detectability by a dynamic natural target and ensuring con- tinuous visual tracking of the target. This work extends the overall concept by examining the utility of real-time acoustic signature self-assessment and exploiting shadows as hiding locations for use in a combined visual and acoustic stealth framework.
Resumo:
This work is motivated by the desire to covertly track mobile targets, either animal or human, in previously unmapped outdoor natural environments using off-road robotic platforms with a non-negligible acoustic signature. The use of robots for stealthy surveillance is not new. Many studies exist but only consider the navigation problem to maintain visual covertness. However, robotic systems also have a significant acoustic footprint from the onboard sensors, motors, computers and cooling systems, and also from the wheels interacting with the terrain during motion. All these can jepordise any visual covertness. In this work, we experimentally explore the concepts of opportunistically utilizing naturally occurring sounds within outdoor environments to mask the motion of a robot, and being visually covert whilst maintaining constant observation of the target. Our experiments in a constrained outdoor built environment demonstrate the effectiveness of the concept by showing a reduced acoustic signature as perceived by a mobile target allowing the robot to covertly navigate to opportunistic vantage points for observation.
Resumo:
This paper describes a texture recognition based method for segmenting kelp from images collected in highly dynamic shallow water environments by an Autonomous Underwater Vehicle (AUV). A particular challenge is image quality that is affected by uncontrolled lighting, reduced visibility, significantly varying perspective due to platform egomotion, and kelp sway from wave action. The kelp segmentation approach uses the Mahalanobis distance as a way to classify Haralick texture features from sub-regions within an image. The results illustrate the applicability of the method to classify kelp allowing construction of probability maps of kelp masses across a sequence of images.