902 resultados para Drug-design
Resumo:
As a special type of novel flexible structures, tensegrity holds promise for many potential applications in such fields as materials science, biomechanics, civil and aerospace engineering. Rhombic systems are an important class of tensegrity structures, in which each bar constitutes the longest diagonal of a rhombus of four strings. In this paper, we address the design methods of rhombic structures based on the idea that many tensegrity structures can be constructed by assembling one-bar elementary cells. By analyzing the properties of rhombic cells, we first develop two novel schemes, namely, direct enumeration scheme and cell-substitution scheme. In addition, a facile and efficient method is presented to integrate several rhombic systems into a larger tensegrity structure. To illustrate the applications of these methods, some novel rhombic tensegrity structures are constructed.
Resumo:
A teaching and learning development project is currently under way at Queens-land University of Technology to develop advanced technology videotapes for use with the delivery of structural engineering courses. These tapes consist of integrated computer and laboratory simulations of important concepts, and behaviour of structures and their components for a number of structural engineering subjects. They will be used as part of the regular lectures and thus will not only improve the quality of lectures and learning environment, but also will be able to replace the ever-dwindling laboratory teaching in these subjects. The use of these videotapes, developed using advanced computer graphics, data visualization and video technologies, will enrich the learning process of the current diverse engineering student body. This paper presents the details of this new method, the methodology used, the results and evaluation in relation to one of the structural engineering subjects, steel structures.
Resumo:
Background: In health related research, it is critical not only to demonstrate the efficacy of intervention, but to show that this is not due to chance or confounding variables. Content: Single case experimental design is a useful quasi-experimental design and method used to achieve these goals when there are limited participants and funds for research. This type of design has various advantages compared to group experimental designs. One such advantage is the capacity to focus on individual performance outcomes compared to group performance outcomes. Conclusions: This comprehensive review demonstrates the benefits and limitations of using single case experimental design, its various design methods, and data collection and analysis for research purposes.
Resumo:
Magnetic Resonance Imaging (MRI) offers a valuable research tool for the assessment of 3D spinal deformity in AIS, however the horizontal patient position imposed by conventional scanners removes the axial compressive loading on the spine. The objective of this study was to design, construct and test an MRI compatible compression device for research into the effect of axial loading on spinal deformity using supine MRI scans. The device was evaluated by performing unloaded and loaded supine MRI scans on a series of 10 AIS patients. The patient group had a mean initial (unloaded) major Cobb angle of 43±7º, which increased to 50±9º on application of the compressive load. The 7° increase in mean Cobb angle is consistent with that reported by a previous study comparing standing versus supine posture in scoliosis patients (Torell et al, 1985. Spine 10:425-7).
Resumo:
This article reports the details of a research on novel design in the field of semitrailer sector and discuss design by hazard prevention techniques. The novel design made addresses occupational health and safety (OHS)concerns of fall from heights. The research includes a detailed survey of national data sources to examine the fatalities caused due to fall from heights in car carriers. The study investigates OHS recommendations in Australia for semitrailer sector. Often injuries are caused due to drivers working above the 1.5 meter height for loading, unloading of the cars, moving the decks up, down, strapping the cars, and slipperly. The new design is developed using latest computer aided design and engineeing (CAD, CAE), product data management (PDM), virtual design process (VDP). The new car carrier design excels in reducing the risks of injuries to drivers and new bench mark for OHS standards. The new design has all the decks operated with hydraulics and uses unique ratchet lock mechanism (fool proof design) and loading happens at a safe working height (below 1.5 meter). All the cars are strapped on the safe working height, and then car desks operated hydraulically to transfer them to the required position. This also includes the car on the prime mover, which shuttles across from one deck to other using hydraulic and rack-pinion mechanisms. The novel design car carrier solves the problem of falls from height: next step would be to transfer this technology across other similar effected sectors.
Resumo:
Multi-disciplinary approaches to complex problems are becoming more common – they enable criteria manifested in distinct (and potentially conflicting) domains to be jointly balanced and satisfied. In this paper we present airport terminals as a case study which requires multi-disciplinary knowledge in order to balance conflicting security, economic and passenger-driven needs and correspondingly enhance the design, management and operation of airport terminals. The need for a truly multi-disciplinary scientific approach which integrates information, process, people, technology and space domains is highlighted through a brief discussion of two challenges currently faced by airport operators. The paper outlines the approach taken by this project, detailing the aims and objectives of each of seven diverse research programs.