833 resultados para Drug Therapy, Combination


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Bcr-Abl kinase inhibitor, STI571, is the first line treatment for chronic myeloid leukaemia (CML), but the recent emergence of STI571 resistance has led to the examination of combination therapies. In this report, we describe how a novel non-toxic G1-arresting compound, pyrrolo-1,5-benzoxazepine (PBOX)-21, potentiates the apoptotic ability of STI571 in Bcr-Abl-positive CML cells. Co-treatment of CML cells with PBOX-21 and STI571 induced more apoptosis than either drug alone in parental (K562S and LAMA84) and STI571-resistant cells lines (K562R). This potentiation of apoptosis was specific to Bcr-Abl-positive leukaemia cells with no effect observed on Bcr-Abl-negative HL-60 acute myeloid leukaemia cells. Apoptosis induced by PBOX-21/STI571 resulted in activation of caspase-8, cleavage of PARP and Bcl-2, upregulation of the pro-apoptotic protein Bim and a downregulation of Bcr-Abl. Repression of proteins involved in Bcr-Abl transformation, the anti-apoptotic proteins Mcl-1 and Bcl-(XL) was also observed. The combined lack of an early change in mitochondrial membrane potential, release of cytochrome c and cleavage of pro-caspase-9 suggests that this pathway is not involved in the initiation of apoptosis by PBOX-21/STI571. Apoptosis was significantly reduced following pre-treatment with either the general caspase inhibitor Boc-FMK or the chymotrypsin-like serine protease inhibitor TPCK, but was completely abrogated following pre-treatment with a combination of these inhibitors. This demonstrates the important role for each of these protease families in this apoptotic pathway. In conclusion, our data highlights the potential of PBOX-21 in combination with STI571 as an effective therapy against CML.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interferon-alpha (IFN-alpha) therapy is commonly used in the treatment of neoplastic and autoimmune diseases, including cutaneous T cell lymphoma (CTCL). However, the IFN-alpha response is unpredictable, and the IFN-alpha cell targets and pathways are only partially understood. To delineate the molecular mechanisms of IFN-alpha activity, gene expression profiling was performed in a time-course experiment of both IFN-alpha sensitive and IFN-alpha-resistant variants of a CTCL cell line. These experiments revealed that IFN-alpha is responsible for the regulation of hundreds of genes in both variants and predominantly involves genes implicated in signal transduction, cell cycle control, apoptosis, and transcription regulation. Specifically, the IFN-alpha response of tumoral T cells is due to a combination of induction of apoptosis in which TNFSF10 and HSXIAPAF1 may play an important role and cell cycle arrest achieved by downregulation of CDK4 and CCNG2 and upregulation of CDKN2C and tumor suppressor genes (TSGs). Resistance to IFN-alpha appears to be associated with failure to induce IRF1 and IRF7 and deregulation of the apoptotic signals of HSXIAPAF1, TRADD, BAD, and BNIP3. Additionally, cell cycle progression is heralded by upregulation of CDC25A and CDC42. A critical role of NF-kappaB in promoting cell survival in IFN-alpha-resistant cells is indicated by the upregulation of RELB and LTB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Combined Fludarabine and Cyclophosphamide is now standard first-line therapy in chronic lymphocytic leukaemia (CLL) and the addition of Rituximab improves outcome.

METHODS: We adopted a modified Fludarabine, Cyclophosphamide and Rituximab (FCR) protocol in treating 39 patients (median age 57 years) with progressive or advanced CLL. Depending on CR, treatment was given for four or six cycles.

RESULT: Twenty-six patients were treatment naïve and 13 were pre-treated. Twelve patients had progressive Binet stage A, 16 stage B and 11 stage C disease. The overall response rate (ORR) was 100%, with 75% achieving CR. Neutropenia was the major toxicity in 71/187 (38%) of the cycles. There were five deaths, two from infection and three from progressive disease. Twenty-six of 31 patients have maintained their post-treatment disease status for a median of 17 months (2-41).

CONCLUSION: We conclude that FCR is a feasible, well-tolerated and effective treatment for patients with CLL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS: The aim of this article was to evaluate afatinib (BIBW 2992), an ErbB family blocker, and nintedanib (BIBF 1120), a triple angiokinase inhibitor, in castration-resistant prostate cancer patients.

PATIENTS & METHODS: Patients were randomized to receive nintedanib (250 mg twice daily), afatinib (40 mg once daily [q.d.]), or alternating sequential 7-day nintedanib (250 mg twice daily) and afatinib (70 mg q.d. [Combi70]), which was reduced to 40 mg q.d. (Combi40) due to adverse events. The primary end point was progression-free rate at 12 weeks.

RESULTS: Of the 85 patients treated 46, 20, 16 and three received nintedanib, afatinib, Combi40 and Combi70, respectively. At 12 weeks, the progression-free rate was 26% (seven out of 27 patients) for nintedanib, and 0% for afatinib and Combi40 groups. Two patients had a ≥50% decline in PSA (nintedanib and the Combi40 groups). The most common drug-related adverse events were diarrhea, nausea, vomiting and lethargy.

CONCLUSION: Nintedanib and/or afatinib demonstrated limited anti-tumor activity in unselected advanced castration-resistant prostate cancer patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the major challenges in systems biology is to understand the complex responses of a biological system to external perturbations or internal signalling depending on its biological conditions. Genome-wide transcriptomic profiling of cellular systems under various chemical perturbations allows the manifestation of certain features of the chemicals through their transcriptomic expression profiles. The insights obtained may help to establish the connections between human diseases, associated genes and therapeutic drugs. The main objective of this study was to systematically analyse cellular gene expression data under various drug treatments to elucidate drug-feature specific transcriptomic signatures. We first extracted drug-related information (drug features) from the collected textual description of DrugBank entries using text-mining techniques. A novel statistical method employing orthogonal least square learning was proposed to obtain drug-feature-specific signatures by integrating gene expression with DrugBank data. To obtain robust signatures from noisy input datasets, a stringent ensemble approach was applied with the combination of three techniques: resampling, leave-one-out cross validation, and aggregation. The validation experiments showed that the proposed method has the capacity of extracting biologically meaningful drug-feature-specific gene expression signatures. It was also shown that most of signature genes are connected with common hub genes by regulatory network analysis. The common hub genes were further shown to be related to general drug metabolism by Gene Ontology analysis. Each set of genes has relatively few interactions with other sets, indicating the modular nature of each signature and its drug-feature-specificity. Based on Gene Ontology analysis, we also found that each set of drug feature (DF)-specific genes were indeed enriched in biological processes related to the drug feature. The results of these experiments demonstrated the pot- ntial of the method for predicting certain features of new drugs using their transcriptomic profiles, providing a useful methodological framework and a valuable resource for drug development and characterization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The androgen receptor is a key transcription factor contributing to the development of all stages of prostate cancer (PCa). In addition, other transcription factors have been associated with poor prognosis in PCa, amongst which c-Myc (MYC) is a well-established oncogene in many other cancers. We have previously reported that the AR promotes glycolysis and anabolic metabolism; many of these metabolic pathways are also MYC-regulated in other cancers. In this study, we report that in PCa cells de novo purine biosynthesis and the subsequent conversion to XMP is tightly regulated by MYC and independent of AR activity. We characterized two enzymes, PAICS and IMPDH2, within the pathway as PCa biomarkers in tissue samples and report increased efficacy of established anti-androgens in combination with a clinically approved IMPDH inhibitor, mycophenolic acid (MPA). Treatment with MPA led to a significant reduction in cellular guanosine triphosphate (GTP) levels accompanied by nucleolar stress and p53 stabilization. In conclusion, targeting purine biosynthesis provides an opportunity to perturb PCa metabolism and enhance tumour suppressive stress responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To review key clinical issues underlying the assessment of in vivo efficacy when using antiangiogenic therapies for cancer treatment.

METHODS: Literature relevant to use of antiangiogenic therapies in cancer was reviewed, with particular emphasis on the assessment of in vivo efficacy of these agents, as well as additional angiogenic factors that could play a role in escape from angiogenesis inhibition.

RESULTS: In order to grow and metastasize, tumors need to continually acquire new blood supplies; therefore, therapeutic inhibition of angiogenesis has become a component of anticancer treatment for many tumor types. Bevacizumab, a humanized monoclonal antibody directed at vascular endothelial growth factor A (VEGF-A), has shown activity in combination with chemotherapy in metastatic colorectal cancer. Nevertheless, the use of antiangiogenic therapies remains suboptimal; specifically, optimal dose, duration of therapy, and combination of agents remain unknown. Also, at present, it is not possible to determine which patients are most likely to respond to a given form of antiangiogenic therapy. There has been increased recognition of alternative pathways possibly associated with disease progression in patients undergoing antiangiogenic therapy targeted at VEGF-A. Multiligand-targeted antiangiogenic therapies, such as ziv-aflibercept (formerly known as aflibercept, VEGF Trap), are currently undergoing clinical evaluation. Ziv-aflibercept forms monomeric complexes with VEGF-A, VEGF-B, and PlGF, which have a long half-life, allowing optimization of ziv-aflibercept doses and angiogenic blockage.

CONCLUSIONS: Although antiangiogenic therapies have increased treatment options for cancer patients, their use is limited by a lack of established and standardized methodology to evaluate their efficacy in vivo. Circulating endothelial cells, hypertension, and several molecular and imaging-based markers have potential for use as biomarkers in these patients and may better define appropriate patient populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: We conducted a phase I/II clinical trial to determine the safety and feasibility of combining vorinostat with 5-fluorouracil (5-FU) in patients with metastatic colorectal cancer (mCRC) and elevated intratumoral thymidylate synthase (TS).

METHODS: Patients with mCRC who had failed all standard therapeutic options were eligible. Intratumoral TS mRNA expression and peripheral blood mononuclear cell (PBMC) histone acetylation were measured before and after 6 consecutive days of vorinostat treatment at 400 mg PO daily. 5-FU/LV were given on days 6 and 7 and repeated every 2 weeks, along with continuous daily vorinostat. Dose escalation occurred in cohorts of three to six patients.

RESULTS: Ten patients were enrolled. Three dose levels were explored in the phase I portion of the study. Two dose-limiting toxicities (DLTs) were observed at the starting dose level, which resulted in dose de-escalation to levels -1 and -2. Given the occurrence of two DLTs at each of the dose levels, we were unable to establish a maximum tolerated dose (MTD). Two patients achieved significant disease stabilization for 4 and 6 months. Grade 3 and 4 toxicities included fatigue, thrombocytopenia and mucositis. Intratumoral TS downregulation > or = 50% was observed in one patient only. Acetylation of histone 3 was observed in PBMCs following vorinostat treatment.

CONCLUSIONS: The study failed to establish a MTD and was terminated. The presence of PBMC histone acetylation indicates biological activity of vorinostat, however, consistent reductions in intratumoral TS mRNA were not observed. Alternate vorinostat dose-scheduling may alleviate the toxicity and achieve optimal TS downregulation.