952 resultados para Doubly robust estimation
Resumo:
We describe the key role played by partial evaluation in the Supercomputing Toolkit, a parallel computing system for scientific applications that effectively exploits the vast amount of parallelism exposed by partial evaluation. The Supercomputing Toolkit parallel processor and its associated partial evaluation-based compiler have been used extensively by scientists at MIT, and have made possible recent results in astrophysics showing that the motion of the planets in our solar system is chaotically unstable.
Resumo:
The capability of estimating the walking direction of people would be useful in many applications such as those involving autonomous cars and robots. We introduce an approach for estimating the walking direction of people from images, based on learning the correct classification of a still image by using SVMs. We find that the performance of the system can be improved by classifying each image of a walking sequence and combining the outputs of the classifier. Experiments were performed to evaluate our system and estimate the trade-off between number of images in walking sequences and performance.
Resumo:
In this paper we focus on the problem of estimating a bounded density using a finite combination of densities from a given class. We consider the Maximum Likelihood Procedure (MLE) and the greedy procedure described by Li and Barron. Approximation and estimation bounds are given for the above methods. We extend and improve upon the estimation results of Li and Barron, and in particular prove an $O(\\frac{1}{\\sqrt{n}})$ bound on the estimation error which does not depend on the number of densities in the estimated combination.
Resumo:
Local descriptors are increasingly used for the task of object recognition because of their perceived robustness with respect to occlusions and to global geometrical deformations. Such a descriptor--based on a set of oriented Gaussian derivative filters-- is used in our recognition system. We report here an evaluation of several techniques for orientation estimation to achieve rotation invariance of the descriptor. We also describe feature selection based on a single training image. Virtual images are generated by rotating and rescaling the image and robust features are selected. The results confirm robust performance in cluttered scenes, in the presence of partial occlusions, and when the object is embedded in different backgrounds.
Resumo:
Customer satisfaction and retention are key issues for organizations in today’s competitive market place. As such, much research and revenue has been invested in developing accurate ways of assessing consumer satisfaction at both the macro (national) and micro (organizational) level, facilitating comparisons in performance both within and between industries. Since the instigation of the national customer satisfaction indices (CSI), partial least squares (PLS) has been used to estimate the CSI models in preference to structural equation models (SEM) because they do not rely on strict assumptions about the data. However, this choice was based upon some misconceptions about the use of SEM’s and does not take into consideration more recent advances in SEM, including estimation methods that are robust to non-normality and missing data. In this paper, both SEM and PLS approaches were compared by evaluating perceptions of the Isle of Man Post Office Products and Customer service using a CSI format. The new robust SEM procedures were found to be advantageous over PLS. Product quality was found to be the only driver of customer satisfaction, while image and satisfaction were the only predictors of loyalty, thus arguing for the specificity of postal services
Resumo:
The Aitchison vector space structure for the simplex is generalized to a Hilbert space structure A2(P) for distributions and likelihoods on arbitrary spaces. Central notations of statistics, such as Information or Likelihood, can be identified in the algebraical structure of A2(P) and their corresponding notions in compositional data analysis, such as Aitchison distance or centered log ratio transform. In this way very elaborated aspects of mathematical statistics can be understood easily in the light of a simple vector space structure and of compositional data analysis. E.g. combination of statistical information such as Bayesian updating, combination of likelihood and robust M-estimation functions are simple additions/ perturbations in A2(Pprior). Weighting observations corresponds to a weighted addition of the corresponding evidence. Likelihood based statistics for general exponential families turns out to have a particularly easy interpretation in terms of A2(P). Regular exponential families form finite dimensional linear subspaces of A2(P) and they correspond to finite dimensional subspaces formed by their posterior in the dual information space A2(Pprior). The Aitchison norm can identified with mean Fisher information. The closing constant itself is identified with a generalization of the cummulant function and shown to be Kullback Leiblers directed information. Fisher information is the local geometry of the manifold induced by the A2(P) derivative of the Kullback Leibler information and the space A2(P) can therefore be seen as the tangential geometry of statistical inference at the distribution P. The discussion of A2(P) valued random variables, such as estimation functions or likelihoods, give a further interpretation of Fisher information as the expected squared norm of evidence and a scale free understanding of unbiased reasoning
Resumo:
The R-package “compositions”is a tool for advanced compositional analysis. Its basic functionality has seen some conceptual improvement, containing now some facilities to work with and represent ilr bases built from balances, and an elaborated subsys- tem for dealing with several kinds of irregular data: (rounded or structural) zeroes, incomplete observations and outliers. The general approach to these irregularities is based on subcompositions: for an irregular datum, one can distinguish a “regular” sub- composition (where all parts are actually observed and the datum behaves typically) and a “problematic” subcomposition (with those unobserved, zero or rounded parts, or else where the datum shows an erratic or atypical behaviour). Systematic classification schemes are proposed for both outliers and missing values (including zeros) focusing on the nature of irregularities in the datum subcomposition(s). To compute statistics with values missing at random and structural zeros, a projection approach is implemented: a given datum contributes to the estimation of the desired parameters only on the subcompositon where it was observed. For data sets with values below the detection limit, two different approaches are provided: the well-known imputation technique, and also the projection approach. To compute statistics in the presence of outliers, robust statistics are adapted to the characteristics of compositional data, based on the minimum covariance determinant approach. The outlier classification is based on four different models of outlier occur- rence and Monte-Carlo-based tests for their characterization. Furthermore the package provides special plots helping to understand the nature of outliers in the dataset. Keywords: coda-dendrogram, lost values, MAR, missing data, MCD estimator, robustness, rounded zeros
Resumo:
In a seminal paper, Aitchison and Lauder (1985) introduced classical kernel density estimation techniques in the context of compositional data analysis. Indeed, they gave two options for the choice of the kernel to be used in the kernel estimator. One of these kernels is based on the use the alr transformation on the simplex SD jointly with the normal distribution on RD-1. However, these authors themselves recognized that this method has some deficiencies. A method for overcoming these dificulties based on recent developments for compositional data analysis and multivariate kernel estimation theory, combining the ilr transformation with the use of the normal density with a full bandwidth matrix, was recently proposed in Martín-Fernández, Chacón and Mateu- Figueras (2006). Here we present an extensive simulation study that compares both methods in practice, thus exploring the finite-sample behaviour of both estimators
Resumo:
Interaction effects are usually modeled by means of moderated regression analysis. Structural equation models with non-linear constraints make it possible to estimate interaction effects while correcting for measurement error. From the various specifications, Jöreskog and Yang's (1996, 1998), likely the most parsimonious, has been chosen and further simplified. Up to now, only direct effects have been specified, thus wasting much of the capability of the structural equation approach. This paper presents and discusses an extension of Jöreskog and Yang's specification that can handle direct, indirect and interaction effects simultaneously. The model is illustrated by a study of the effects of an interactive style of use of budgets on both company innovation and performance
Resumo:
Resumen tomado de la publicaci??n. Resumen tambi??n en ingl??s
Resumo:
The estimation of camera egomotion is a well established problem in computer vision. Many approaches have been proposed based on both the discrete and the differential epipolar constraint. The discrete case is mainly used in self-calibrated stereoscopic systems, whereas the differential case deals with a unique moving camera. The article surveys several methods for mobile robot egomotion estimation covering more than 0.5 million samples using synthetic data. Results from real data are also given
Resumo:
When underwater vehicles perform navigation close to the ocean floor, computer vision techniques can be applied to obtain quite accurate motion estimates. The most crucial step in the vision-based estimation of the vehicle motion consists on detecting matchings between image pairs. Here we propose the extensive use of texture analysis as a tool to ameliorate the correspondence problem in underwater images. Once a robust set of correspondences has been found, the three-dimensional motion of the vehicle can be computed with respect to the bed of the sea. Finally, motion estimates allow the construction of a map that could aid to the navigation of the robot
Resumo:
Often practical performance of analytical redundancy for fault detection and diagnosis is decreased by uncertainties prevailing not only in the system model, but also in the measurements. In this paper, the problem of fault detection is stated as a constraint satisfaction problem over continuous domains with a big number of variables and constraints. This problem can be solved using modal interval analysis and consistency techniques. Consistency techniques are then shown to be particularly efficient to check the consistency of the analytical redundancy relations (ARRs), dealing with uncertain measurements and parameters. Through the work presented in this paper, it can be observed that consistency techniques can be used to increase the performance of a robust fault detection tool, which is based on interval arithmetic. The proposed method is illustrated using a nonlinear dynamic model of a hydraulic system
Resumo:
This paper presents a complete solution for creating accurate 3D textured models from monocular video sequences. The methods are developed within the framework of sequential structure from motion, where a 3D model of the environment is maintained and updated as new visual information becomes available. The camera position is recovered by directly associating the 3D scene model with local image observations. Compared to standard structure from motion techniques, this approach decreases the error accumulation while increasing the robustness to scene occlusions and feature association failures. The obtained 3D information is used to generate high quality, composite visual maps of the scene (mosaics). The visual maps are used to create texture-mapped, realistic views of the scene
Resumo:
We present a computer vision system that associates omnidirectional vision with structured light with the aim of obtaining depth information for a 360 degrees field of view. The approach proposed in this article combines an omnidirectional camera with a panoramic laser projector. The article shows how the sensor is modelled and its accuracy is proved by means of experimental results. The proposed sensor provides useful information for robot navigation applications, pipe inspection, 3D scene modelling etc