999 resultados para Double lip
Resumo:
In the double-detonation scenario for Type Ia supernovae, it is suggested that a detonation initiates in a shell of helium-rich material accreted from a companion star by a sub-Chandrasekhar-mass white dwarf. This shell detonation drives a shock front into the carbon-oxygen white dwarf that triggers a secondary detonation in the core. The core detonation results in a complete disruption of the white dwarf. Earlier studies concluded that this scenario has difficulties in accounting for the observed properties of Type Ia supernovae since the explosion ejecta are surrounded by the products of explosive helium burning in the shell. Recently, however, it was proposed that detonations might be possible for much less massive helium shells than previously assumed (Bildsten et al.). Moreover, it was shown that even detonations of these minimum helium shell masses robustly trigger detonations of the carbon-oxygen core (Fink et al.). Therefore, it is possible that the impact of the helium layer on observables is less than previously thought. Here, we present time-dependent multi-wavelength radiative transfer calculations for models with minimum helium shell mass and derive synthetic observables for both the optical and ? -ray spectral regions. These differ strongly from those found in earlier simulations of sub-Chandrasekhar-mass explosions in which more massive helium shells were considered. Our models predict light curves that cover both the range of brightnesses and the rise and decline times of observed Type Ia supernovae. However, their colors and spectra do not match the observations. In particular, their B - V colors are generally too red. We show that this discrepancy is mainly due to the composition of the burning products of the helium shell of the Fink et al. models which contain significant amounts of titanium and chromium. Using a toy model, we also show that the burning products of the helium shell depend crucially on its initial composition. This leads us to conclude that good agreement between sub-Chandrasekhar-mass explosions and observed Type Ia supernovae may still be feasible but further study of the shell properties is required.
Resumo:
We present theoretical delay times and rates of thermonuclear explosions that are thought to produce Type Ia supernovae (SNe Ia), including the double-detonation sub-Chandrasekhar mass model, using the population synthesis binary evolution code startrack. If detonations of sub-Chandrasekhar mass carbon-oxygen white dwarfs following a detonation in an accumulated layer of helium on the white dwarf's surface ('double-detonation' models) are able to produce thermonuclear explosions which are characteristically similar to those of SNe Ia, then these sub-Chandrasekhar mass explosions may account for at least some substantial fraction of the observed SN Ia rate. Regardless of whether all double-detonations look like 'normal' SNe Ia, in any case the explosions are expected to be bright and thus potentially detectable. Additionally, we find that the delay time distribution of double-detonation sub-Chandrasekhar mass SNe Ia can be divided into two distinct formation channels: the 'prompt' helium-star channel with delay times
Resumo:
The explosion of sub-Chandrasekhar mass white dwarfs via the double detonation scenario is a potential explanation for type Ia supernovae. In this scenario, a surface detonation in a helium layer initiates a detonation in the underlying carbon/oxygen core leading to an explosion. For a given core mass, a lower bound has been determined on the mass of the helium shell required for dynamical burning during a helium flash, which is a necessary prerequisite for detonation. For a range of core and corresponding minimum helium shell masses, we investigate whether an assumed surface helium detonation is capable of triggering a subsequent detonation in the core even for this limiting case. We carried out hydrodynamic simulations on a co-expanding Eulerian grid in two dimensions assuming rotational symmetry. The detonations are propagated using the level-set approach and a simplified scheme for nuclear reactions that has been calibrated with a large nuclear network. The same network is used to determine detailed nucleosynthetic abundances in a post-processing step. Based on approximate detonation initiation criteria in the literature, we find that secondary core detonations are triggered for all of the simulated models, ranging in core mass from 0.810 up to 1.385 M? with corresponding shell masses from 0.126 down to 0.0035 M?. This implies that, as soon as a detonation triggers in a helium shell covering a carbon/oxygen white dwarf, a subsequent core detonation is virtually inevitable.
Resumo:
Thermonuclear explosions may arise in binary star systems in which a carbon-oxygen (CO) white dwarf (WD) accretes helium-rich material from a companion star. If the accretion rate allows a sufficiently large mass of helium to accumulate prior to ignition of nuclear burning, the helium surface layer may detonate, giving rise to an astrophysical transient. Detonation of the accreted helium layer generates shock waves that propagate into the underlying CO WD. This might directly ignite a detonation of the CO WD at its surface (an edge-lit secondary detonation) or compress the core of the WD sufficiently to trigger a CO detonation near the centre. If either of these ignition mechanisms works, the two detonations (helium and CO) can then release sufficient energy to completely unbind the WD. These 'double-detonation' scenarios for thermonuclear explosion of WDs have previously been investigated as a potential channel for the production of Type Ia supernovae from WDs of ~ 1 M . Here we extend our 2D studies of the double-detonation model to significantly less massive CO WDs, the explosion of which could produce fainter, more rapidly evolving transients. We investigate the feasibility of triggering a secondary core detonation by shock convergence in low-mass CO WDs and the observable consequences of such a detonation. Our results suggest that core detonation is probable, even for the lowest CO core masses that are likely to be realized in nature. To quantify the observable signatures of core detonation, we compute spectra and light curves for models in which either an edge-lit or compression-triggered CO detonation is assumed to occur. We compare these to synthetic observables for models in which no CO detonation was allowed to occur. If significant shock compression of the CO WD occurs prior to detonation, explosion of the CO WD can produce a sufficiently large mass of radioactive iron-group nuclei to significantly affect the light curves. In particular, this can lead to relatively slow post-maximum decline. If the secondary detonation is edge-lit, however, the CO WD explosion primarily yields intermediate-mass elements that affect the observables more subtly. In this case, near-infrared observations and detailed spectroscopic analysis would be needed to determine whether a core detonation occurred. We comment on the implications of our results for understanding peculiar astrophysical transients including SN 2002bj, SN 2010X and SN 2005E. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.
Resumo:
Background: AGI004 is a controlled-release transdermal patch preparation of mecamylamine. We conducted a randomised placebo-controlled phase II study of two dose levels of AGI004 in chemotherapy-induced diarrhoea (CID).
Methods: Adult patients receiving chemotherapy who had experienced diarrhoea (NCI grade 1-2) during previous cycles of chemotherapy were eligible. In all, 64 patients were randomised to receive AGI004 4mg then 8mg per 24 h transdermal patch or placebo for two sequential cycles of chemotherapy. Patients' severity of diarrhoea was physician-assessed using NCI grade of diarrhoea and patient-assessed using information recorded in daily diaries of bowel movements.
Results: Overall AGI004 doubled the odds of a response to treatment on the first day of chemotherapy based on physician assessment of NCI grade of diarrhoea compared with placebo (odds ratio = 2.0, 90% confidence interval: 0.9-4.5) and there was a trend to improved response rates for AGI004 for the full treatment cycle although these results were not statistically significant. There was also evidence of significantly improved response rates based on patient assessment of diarrhoea both overall (P = 0.05) and at the 8-mg dose level (P = 0.02) compared with placebo.
Conclusion: AGI004 demonstrated effectiveness in reducing chemotherapy-associated diarrhoea, with results suggesting response across multiple measurements of diarrhoea. Treatment was well tolerated with no drug-related adverse events. Further evaluation of this agent in the management of CID is warranted.
Resumo:
Herein we present a study on the physical/chemical properties of a new Deep Eutectic Solvent (DES) based on N-methylacetamide (MAc) and lithium bis[(trifluoromethyl)sulfonyl]imide (LiTFSI). Due to its interesting properties, such as wide liquid-phase range from -60°C to 280°C, low vapor pressure, and high ionic conductivity up to 28.4mScm at 150°C and at x=1/4, this solution can be practically used as electrolyte for electrochemical storage systems such as electric double-layer capacitors (EDLCs) and/or lithium ion batteries (LiBs). Firstly, relationships between its transport properties (conductivity and viscosity) as a function of composition and temperature were discussed through Arrhenius' Law and Vogel-Tamman-Fulcher (VTF) equations, as well as by using the Walden classification. From this investigation, it appears that this complex electrolyte possesses a number of excellent transport properties, like a superionic character for example. Based on which, we then evaluated its electrochemical performances as electrolyte for EDLCs and LiBs applications by using activated carbon (AC) and lithium iron phosphate (LiFePO) electrodes, respectively. These results demonstrate that this electrolyte has a good compatibility with both electrodes (AC and LiFePO) in each testing cell driven also by excellent electrochemical properties in specific capacitance, rate and cycling performances, indicating that the LiTFSI/MAc DES can be a promising electrolyte for EDLCs and LiBs applications especially for those requiring high safety and stability. © 2013 Elsevier Ltd.
Resumo:
Microstrip patch antennas are strong candidates for use in many wireless communications applications. This paper proposes the use of a patch antenna with two U-shaped slots to achieve dual band operation. A thick substrate helps broaden the individual bandwidths. The antenna is designed based on extensive IE3D simulation studies. A prototype antenna is fabricated and experimentally verified for the required performance.
Resumo:
Prostate specific antigen-a1-antichymotrypsin was detected by a double-enhancement strategy involving the exploitation of both colloidal gold nanoparticles (AuNPs) and precipitation of an insoluble product formed by HRP biocatalyzed oxidation. The AuNPs were synthesized and conjugated with horse-radish peroxidase-PSA polyclonal antibody by physisorption. Using the protein-colloid for SPR-based detection of the PSA/ACT complex showed their enhancement as being consistent with other previous studies with regard to AuNPs enhancement, while the enzyme precipitation using DAB substrate was applied for the first time and greatly amplified the signal. The limit of detection was found at as low as 0.027 ng/ml of the PSA/ACT complex (or 300 fM), which is much higher than that of previous reports. This study indicates another way to enhance SPR measurement, and it is generally applicable to other SPR-based immunoassays.
Resumo:
The present work reports a comparative study on the performances of two bis[(trifluoromethyl)sulfonyl]imide-based protic (PIL) and aprotic (AIL) ionic liquids, namely, trimethyl-ammonium bis[(trifluoromethyl)sulfonyl]imide ([HN][TFSI], PIL) and trimethyl-sulfonium bis[(trifluoromethyl) sulfonyl]imide ([S][TFSI], AIL), as mixtures with three molecular solvents: gamma butyrolactone (?-BL), propylene carbonate (PC), and acetonitrile (ACN) as electrolytes for supercapacitor applications. After an analysis of their transport properties as a function of temperature, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge measurements were conducted at 25 and -30 C to investigate the performance of these mixtures as electrolytes for supercapacitors using activated carbon as the electrode material. Surprisingly, for each solvent investigated, no significant differences were observed between the electrolytes based on the PIL and AIL in their electrochemical performance due to the presence or the absence of the labile proton. Furthermore, good specific capacitances were observed in the case of ?-BL-based electrolytes even at low temperature. Capacitances up to 131 and 80 F·g are observed for the case of the [S][TFSI] + ?-BL mixture at 25 and -30 C, respectively. This latter result is very promising particularly for the formulation of new environmentally friendly electrolytes within energy storage systems even at low temperatures. © 2013 American Chemical Society.