881 resultados para Dissolution Act
Resumo:
Forty years after world leaders from Vancouver to Vladivostok signed up to the ten principles of the Helsinki Final Act, in this CEPS Essay Erwan Fouéré considers the historic significance of the agreement that laid the foundations for today’s Organization for Security and Co-operation in Europe. The author concludes with a number of recommendations that recall the principles of the Helsinki Final Act of 1975 and argues that, if participating states are willing to uphold them, these principles have even greater relevance today for the resolution of Europe’s complex and protracted conflicts.
Resumo:
This compendium collects a number of articles from FutureLab participants on the current refugee crisis in Europe, providing a series of unique perspectives from all over Europe.
Resumo:
The marine cycle of calcium carbonate (CaCO3) is an important element of the carbon cycle and co-governs the distribution of carbon and alkalinity within the ocean. However, CaCO3 export fluxes and mechanisms governing CaCO3 dissolution are highly uncertain. We present an observationally constrained, probabilistic assessment of the global and regional CaCO3 budgets. Parameters governing pelagic CaCO3 export fluxes and dissolution rates are sampled using a Monte Carlo scheme to construct a 1000-member ensemble with the Bern3D ocean model. Ensemble results are constrained by comparing simulated and observation-based fields of excess dissolved calcium carbonate (TA*). The minerals calcite and aragonite are modelled explicitly and ocean–sediment fluxes are considered. For local dissolution rates, either a strong or a weak dependency on CaCO3 saturation is assumed. In addition, there is the option to have saturation-independent dissolution above the saturation horizon. The median (and 68 % confidence interval) of the constrained model ensemble for global biogenic CaCO3 export is 0.90 (0.72–1.05) Gt C yr−1, that is within the lower half of previously published estimates (0.4–1.8 Gt C yr−1). The spatial pattern of CaCO3 export is broadly consistent with earlier assessments. Export is large in the Southern Ocean, the tropical Indo–Pacific, the northern Pacific and relatively small in the Atlantic. The constrained results are robust across a range of diapycnal mixing coefficients and, thus, ocean circulation strengths. Modelled ocean circulation and transport timescales for the different set-ups were further evaluated with CFC11 and radiocarbon observations. Parameters and mechanisms governing dissolution are hardly constrained by either the TA* data or the current compilation of CaCO3 flux measurements such that model realisations with and without saturation-dependent dissolution achieve skill. We suggest applying saturation-independent dissolution rates in Earth system models to minimise computational costs.
Resumo:
Experimental ocean acidification leads to a shift in resource allocation and to an increased [HCO3-] within the perivisceral coelomic fluid (PCF) in the Baltic green sea urchin Strongylocentrotus droebachiensis. We investigated putative mechanisms of this pH compensation reaction by evaluating epithelial barrier function and the magnitude of skeleton (stereom) dissolution. In addition, we measured ossicle growth and skeletal stability. Ussing chamber measurements revealed that the intestine formed a barrier for HCO3- and was selective for cation diffusion. In contrast, the peritoneal epithelium was leaky and only formed a barrier for macromolecules. The ossicles of 6 week high CO2-acclimatised sea urchins revealed minor carbonate dissolution, reduced growth but unchanged stability. On the other hand, spines dissolved more severely and were more fragile following acclimatisation to high CO2. Our results indicate that epithelia lining the PCF space contribute to its acid-base regulation. The intestine prevents HCO3- diffusion and thus buffer leakage. In contrast, the leaky peritoneal epithelium allows buffer generation via carbonate dissolution from the surrounding skeletal ossicles. Long-term extracellular acid-base balance must be mediated by active processes, as sea urchins can maintain relatively high extracellular [HCO3-]. The intestinal epithelia are good candidate tissues for this active net import of HCO3- into the PCF. Spines appear to be more vulnerable to ocean acidification which might significantly impact resistance to predation pressure and thus influence fitness of this keystone species.
Resumo:
We present in situ microelectrode measurements of sediment formation factor and porewater oxygen and pH from six stations in the North Atlantic varying in depth from 2159 to 5380 m. A numerical model of the oxygen data indicates that fluxes of oxygen to the sediments are as much as an order of magnitude higher than benthic chamber flux measurements previously reported in the same area. Model results require dissolution driven by metabolic CO2 production within the sediments to explain the pH data; even at the station with the most undersaturated bottom waters >60% of the calcite dissolution occurs in response to metabolic CO2. Aragonite dissolution alone cannot provide the observed buffering of porewater pH, even at the shallowest station. A sensitivity test of the model that accounts for uncertainties in the bottom water saturation state and the stoichiometry between oxygen consumption and CO2 production during respiration constrains the dissolution rate constant for calcite to between 3 and 30% day**-1, in agreement with earlier in situ determinations of the rate constant. Model results predict that over 35% of the calcium carbonate rain to these sediments dissolves at all stations, confirmed by sediment trap and CaCO3 accumulation data.