890 resultados para Dispersão de ondas Rayleigh
Resumo:
Nonlinear analysis of thermoacoustic instability is essential for prediction of frequencies, amplitudes and stability of limit cycles. Limit cycles in thermoacoustic systems are reached when the energy input from driving processes and energy losses from damping processes balance each other over a cycle of the oscillation. In this paper an integral relation for the rate of change of energy of a thermoacoustic system is derived. This relation is analogous to the well-known Rayleigh criterion in thermoacoustics, but can be used to calculate the amplitudes of limit cycles, as well as their stability. The relation is applied to a thermoacoustic system of a ducted slot-stabilized 2-D premixed flame. The flame is modelled using a nonlinear kinematic model based on the G-equation, while the acoustics of planar waves in the tube are governed by linearised momentum and energy equations. Using open-loop forced simulations, the flame describing function (FDF) is calculated. The gain and phase information from the FDF is used with the integral relation to construct a cyclic integral rate of change of energy (CIRCE) diagram that indicates the amplitude and stability of limit cycles. This diagram is also used to identify the types of bifurcation the system exhibits and to find the minimum amplitude of excitation needed to reach a stable limit cycle from another linearly stable state, for single- mode thermoacoustic systems. Furthermore, this diagram shows precisely how the choice of velocity model and the amplitudedependence of the gain and the phase of the FDF influence the nonlinear dynamics of the system. Time domain simulations of the coupled thermoacoustic system are performed with a Galerkin discretization for acoustic pressure and velocity. Limit cycle calculations using a single mode, as well as twenty modes, are compared against predictions from the CIRCE diagram. For the single mode system, the time domain calculations agree well with the frequency domain predictions. The heat release rate is highly nonlinear but, because there is only a single acoustic mode, this does not affect the limit cycle amplitude. For the twenty-mode system, however, the higher harmonics of the heat release rate and acoustic velocity interact resulting in a larger limit cycle amplitude. Multimode simulations show that in some situations the contribution from higher harmonics to the nonlinear dynamics can be significant and must be considered for an accurate and comprehensive analysis of thermoacoustic systems. Copyright © 2012 by ASME.
Resumo:
Nanocrystalline ZnO films with strong (0002) texture and fine grains were deposited onto ultra-nanocrystalline diamond (UNCD) layers on silicon using high target utilization sputtering technology. The unique characteristic of this sputtering technique allows room temperature growth of smooth ZnO films with a low roughness and low stress at high growth rates. Surface acoustic wave (SAW) devices were fabricated on ZnO/UNCD structure and exhibited good transmission signals with a low insertion loss and a strong side-lobe suppression for the Rayleigh mode SAW. Based on the optimization of the layered structure of the SAW device, a good performance with a coupling coefficient of 5.2% has been realized, promising for improving the microfluidic efficiency in droplet transportation comparing with that of the ZnO/Si SAW device. An optimized temperature coefficient of frequency of -23.4 ppm°C-1 was obtained for the SAW devices with the 2.72 μm-thick ZnO and 1.1 μm-thick UNCD film. Significant thermal effect due to the acoustic heating has been redcued which is related to the temperature stability of the ZnO/UNCD SAW device. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
High frequency Rayleigh and Sezawa modes propagating in the ZnO/GaAs system capable of operating immersed in liquid helium have been engineered. In the case of the Rayleigh mode, the strong attenuation produced by the liquid is counteracted by the strengthening of the mode induced by the ZnO. However, in the case of the Sezawa modes, the attenuation is strongly reduced taking advantage of the depth profile of their acoustic Poynting vectors, that extend deeper into the layered system, reducing the energy radiated into the fluid. Thus, both tailored modes will be suitable for acoustically-driven single-electron and single-photon devices in ZnO-coated GaAs-based systems with the best thermal stability provided by the liquid helium bath. © 2012 IEEE.
Resumo:
This article contains a review of modal stability theory. It covers local stability analysis of parallel flows including temporal stability, spatial stability, phase velocity, group velocity, spatio-temporal stability, the linearized Navier-Stokes equations, the Orr-Sommerfeld equation, the Rayleigh equation, the Briggs-Bers criterion, Poiseuille flow, free shear flows, and secondary modal instability. It also covers the parabolized stability equation (PSE), temporal and spatial biglobal theory, 2D eigenvalue problems, 3D eigenvalue problems, spectral collocation methods, and other numerical solution methods. Computer codes are provided for tutorials described in the article. These tutorials cover the main topics of the article and can be adapted to form the basis of research codes. Copyright © 2014 by ASME.
Resumo:
软件开发是知识密集性活动,高度依赖于人,人的能力、组织结构、人员 配置随项目生命周期的分布、跨职能领域的沟通协调等等,都对软件管理有着影 响。人力资源成本又通常是软件项目的主要成本,所以人力资源的分配和调度对 软件项目来说尤其重要。 软件组织基本上是面向多项目的。从多项目的视角管理项目具有单个项目 独立管理所不具备的优势:项目间依赖关系的更好识别与协调、人力资源的更有 效利用、功能或组件重用、更有效的知识传递等等。但多项目管理比单项目管理 复杂度更高,更加困难。在多项目环境中简单套用传统(单)项目管理方法是不 可取的,需要针对多项目特点进行新的研究。目前很少有系统的研究关注管理软 件多项目。 多项目管理是项目管理发展的新趋势,项目管理界已有很多研究。软件行 业区别其他行业的独特性是其产品的创新性、不确定性以及对人的依赖,完全不 同于大规模生产的项目管理背景,这些独特性导致了敏捷运动及敏捷项目管理, 与经典项目管理几成对立之势。关于敏捷的多项目管理没有多少研究论文,但工 业界确实有一些探索。在实践中,不同的项目、不同的(项目)关系、不同的环 境需要不同的资源调度方法。考察各种多项目资源调度方法,评判其对软件行业 的适用性,并提炼、研究适合各种软件管理场景的方法,无疑可以对软件项目管 理的成熟起到很大作用。 为此,本文首先提出了一套多项目资源调度方法的评价指标体系,包括: 价值取向、集权性、同构性、复杂性、不确定性、执行能力。基于此来比较和评 价来自不同学科的资源调度方法。 本文采用关键词搜索、研究权威的项目管理资料、参与从业者聚集的网上 论坛讨论、到不同企业实地考察等理论与实践相结合的方式,从学术界和业界挖 掘出了大量多项目资源调度方法,并基于共同的指标比较和评价了这些方法,判 断哪些更有用、 更适合某些应用环境和约束, 给方法的选用提供切实的参考信息。 然后,基于多项目资源调度方法的评价指标体系,本文提出了一个软件多 项目资源调度选用方法,给出了明确的指南,指导在不同的多项目环境中,如何 选择适用的资源调度方法;当没有直接匹配适用的方法时,如何创造适合自己的 方法。该选用方法包括 5个步骤:评估多项目的特征及环境;备选方法的匹配和 差距分析;补充完善方法;制定实施路线图;实施、反馈、调整。本文通过3家 公司的案例说明了该选用方法在现实环境的使用。 最后,多项目资源调度方法可能导致单项目资源分布差异,本文引进和定 义了资源分布度量,即,项目生命周期中主要工程阶段的资源配置水平及相邻阶 段的资源配置水平变化,并以此聚类数据,得到7 个资源分布模式:快速组队模 式、固定人员模式、设计中心模式、实现中心模式、测试中心模式、经典 Rayleigh 模式和最小化设计模式。 然后通过相关性分析等统计手段主要从两个方面分析和 检验资源分布模式对项目性能的影响:软件质量(发布后缺陷密度)和成本(生 产率) 。这也是多项目资源调度方法的评价指标体系中的“价值取向”维度,初 步检验评价指标体系中因素的真实差异。 本文还分析了一些潜在因素对资源分布 模式的影响。
Resumo:
Micromachined comb-drive electrostatic resonators with folded-cantilever beams were designed and fabricated. A combination of Rayleigh's method and finite-element analysis was used to calculate the resonant frequency drift as we adjusted the device geometry and material parameters. Three micromachined lateral resonant resonators with different beam widths were fabricated. Their resonant frequencies were experimentally measured to be 64.5,147.2, and 255.5kHz, respectively, which are in good agreement with the simulated resonant frequency. It is shown that an improved frequency performance could be obtained on the poly 3C-SiC based device structural material systems with high Young's modulus.
Resumo:
Bessel beam can overcome the limitation of the Rayleigh range of Gaussian beam with the same spot size propagation without any spreading due to diffraction, which is considered as an useful function in guiding particles in the next generation of optical tweezers. The mathematical description of the Bessel beam generated by an axicon is usually based on the Fresnel diffraction integral theory. In this paper, we deduce another type of analytic expression suitable for describing the beam profile generated from the axicon illuminated by the Gaussian beam based on the interferential theory. Compared with the Fresnel diffraction integral theory, this theory does not use much approximation in the process of mathematical analysis. According to the derived expression, the beam intensity profiles at any positions behind the axicon can be calculated not just restricted inside the cross region as the Fresnel diffraction integral theory gives. The experiments prove that the theoretical results fit the experimental results very well. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
First, recent studies on the information preservation (IP) method, a particle approach for low-speed micro-scale gas flows, are reviewed. The IP method was validated for benchmark issues such as Couette, Poiseuille and Rayleigh flows, compared well with measured data for typical internal flows through micro-channels and external flows past micro flat plates, and combined with the Navier-Stokes equations to be a hybrid scheme for subsonic, rarefied gas flows. Second, the focus is moved to the microscopic characteristic of China stock market, particularly the price correlation between stock deals. A very interesting phenomenon was found that showed a reverse transition behaviour between two neighbouring price changes. This behaviour significantly differs from the transition rules for atomic and molecular energy levels, and it is very helpful to understand the essential difference between stock markets and nature.
Resumo:
In an earlier study on intersonic crack propagation, Gao et al. (J. Mech. Phys. Solids 49: 2113-2132, 2001) described molecular dynamics simulations and continuum analysis of the dynamic behaviors of a mode II dominated crack moving along a weak plane under a constant loading rate. The crack was observed to initiate its motion at a critical time after the onset of loading, at which it is rapidly accelerated to the Rayleigh wave speed and propagates at this speed for a finite time interval until an intersonic daughter crack is nucleated at a peak stress at a finite distance ahead of the original crack tip. The present article aims to analyze this behavior for a mode III crack moving along a bi-material interface subject to a constant loading rate. We begin with a crack in an initially stress-free bi-material subject to a steadily increasing stress. The crack initiates its motion at a critical time governed by the Griffith criterion. After crack initiation, two scenarios of crack propagation are investigated: the first one is that the crack moves at a constant subsonic velocity; the second one is that the crack moves at the lower shear wave speed of the two materials. In the first scenario, the shear stress ahead of the crack tip is singular with exponent -1/2, as expected; in the second scenario, the stress singularity vanishes but a peak stress is found to emerge at a distance ahead of the moving crack tip. In the latter case, a daughter crack supersonic with respect to the softer medium can be expected to emerge ahead of the initial crack once the peak stress reaches the cohesive strength of the interface.
Resumo:
The space-time cross-correlation function C-T(r, tau) of local temperature fluctuations in turbulent Rayleigh-Benard convection is obtained from simultaneous two-point time series measurements. The obtained C-T(r, tau) is found to have the scaling form C-T(r(E), 0) with r(E)=[(r-U tau)(2)+ V-2 tau(2)](1/2), where U and V are two characteristic velocities associated with the mean and rms velocities of the flow. The experiment verifies the theory and demonstrates its applications to a class of turbulent flows in which the requirement of Taylor's frozen flow hypothesis is not met.
Resumo:
The diffusive transport properties in microscale convection flows are studied by using the direct simulation Monte Carlo method. The effective diffusion coefficient D is computed from the mean square displacements of simulated molecules based on the Einstein diffusion equation D = x2 t /2t. Two typical convection flows, namely, thermal creep convection and Rayleigh– Bénard convection, are investigated. The thermal creep convection in our simulation is in the noncontinuum regime, with the characteristic scale of the vortex varying from 1 to 100 molecular mean free paths. The diffusion is shown to be enhanced only when the vortex scale exceeds a certain critical value, while the diffusion is reduced when the vortex scale is less than the critical value. The reason for phenomenon of diffusion reduction in the noncontinuum regime is that the reduction effect due to solid wall is dominant while the enhancement effect due to convection is negligible. A molecule will lose its memory of macroscopic velocity when it collides with the walls, and thus molecules are hard to diffuse away if they are confined between very close walls. The Rayleigh– Bénard convection in our simulation is in the continuum regime, with the characteristic length of 1000 molecular mean free paths. Under such condition, the effect of solid wall on diffusion is negligible. The diffusion enhancement due to convection is shown to scale as the square root of the Péclet number in the steady convection regime, which is in agreement with previous theoretical and experimental results. In the oscillation convection regime, the diffusion is more strongly enhanced because the molecules can easily advect from one roll to its neighbor due to an oscillation mechanism. © 2010 American Institute of Physics. doi:10.1063/1.3528310
Resumo:
Our recent studies on kinetic behaviors of gas flows are reviewed in this paper. These flows have a wide range of background, but share a common feature that the flow Knudsen number is larger than 0.01. Thus kinetic approaches such as the direct simulation Monte Carlo method are required for their description. In the past few years, we studied several micro/nano-scale flows by developing novel particle simulation approach, and investigated the flows in low-pressure chambers and at high altitude. In addition, the microscopic behaviors of a couple of classical flow problems were analyzed, which shows the potential for kinetic approaches to reveal the microscopic mechanism of gas flows.
Resumo:
通过对单层流体浮力-热毛细对流和两层流体 B$\acute{\rm e}$nard-Marangoni对流的实验研究,探讨界面张力梯度引起的自然对流的特征及机理问题。考虑到表面张力是温度的函数,对上面是空气(或其蒸汽)的薄液层,加载水平温度梯度将使得气液表面上表面张力分布不均匀,耦合于地面的重力作用,将会驱动薄层流体形成浮力-热毛细对流运动。液层厚度和温度梯度的改变(引起系统长高比、Bond数、Rayleigh数以及Marangoni数的变化)直接影响到薄层流体的对流模式的变化,还可能使得浮力-热毛细对流从稳定发展到不稳定。本研究中以硅油为实验介质,应用高分辨率PIV技术对薄层流体的对流速度场进行了测量,观察到了对流由单胞结构向多胞结构以及由稳定对流向振荡对流的转捩过程,分析给出了对流模式结构变化的规律以及状态转变的临界参数。在浮力-热毛细对流发展过程中,流体表面的变形(形貌)和表面振荡直接反映了热毛细作用与浮力作用的耦合规律以及热毛细对流表面波的基本特征。实验中应用激光干涉技术以及高精度位移传感器对薄液层体系(液层厚度1mm$\sim$5mm)作了系统的研究,获得了微米量级面形形貌变化规律及其亚微米尺度的表面振荡特性。用FFT以及小波分析方法研究了流体自由面振荡的分岔转捩过程及通往混沌的转捩途径。该研究对理解流体热毛细对流的机理具有重要的意义。在自然界里和工程技术中,多层流体体系对流现象更为普遍。近20年来,互不混溶的两层液体体系成为了很多理论和实验研究的重要对象,其主要原因有:(1)在两层流体体系中,由于上下层对流的耦合作用,在临界点上存在HOPF分叉,使得两层模型成为非线性理论研究的理想模型;(2)两层流体模型被应用于地壳运动的研究和空间晶体生长等领域。近年,很多学者通过理论分析和数值模拟对加载垂直温度梯度的上下两层流体B$\acute{\rm e}$nard-Marangoni对流问题进行了研究。上下液层对流的耦合与竞争可以导致上下液层出现多种对流耦合模式和振荡规律,外加温差、液层厚度以及液层厚度比的变化是形成不同对流模式的重要因素。本研究以FC70和KF90-10为实验介质,应用高分辨率PIV技术对两薄层流体B$\acute{\rm e}$nard-Marangoni对流进行了测量,从实验中清晰地观测到了3种临界对流模式:机械耦合、热耦合、临界振荡,分析给出了3种对流转换的临界参数,发现临界振荡可以在峰值液层厚度比附近一个较大的区域范围出现,并且峰值厚度比远离平衡厚度比,这些结果与目前的理论研究有明显的的差异。总之,两种不同外加温度梯度方式,会导致两种不同机制的对流--热毛细对流和Marangoni对流,他们是微重力流体物理研究的重要内容。
Resumo:
Intense heavy ion beams offer a unique tool for generating samples of high energy density matter with extreme conditions of density and pressure that are believed to exist in the interiors of giant planets. An international accelerator facility named FAIR (Facility for Antiprotons and Ion Research) is being constructed at Darmstadt, which will be completed around the year 2015. It is expected that this accelerator facility will deliver a bunched uranium beam with an intensity of 5x10(11) ions per spill with a bunch length of 50-100 ns. An experiment named LAPLAS (Laboratory Planetary Sciences) has been proposed to achieve a low-entropy compression of a sample material like hydrogen or water (which are believed to be abundant in giant planets) that is imploded in a multi-layered target by the ion beam. Detailed numerical simulations have shown that using parameters of the heavy ion beam that will be available at FAIR, one can generate physical conditions that have been predicted to exist in the interior of giant planets. In the present paper, we report simulations of compression of water that show that one can generate a plasma phase as well as a superionic phase of water in the LAPLAS experiments.
Resumo:
The biocatalytic growth of gold nanoparticles (Au-NPs) has been employed in the design of new optical biosensors based on the enhanced resonance light scattering (RLS) signals. Both absorption spectroscopy and transmission electron microscopy (TEM) analysis revealed Au-NP seeds could be effectively enlarged upon the reaction with H2O2, an important metabolite that could be generated by many biocatalytic reactions.