974 resultados para Design Collaboration
Resumo:
MicroRNAs (miRNA) are recognized posttranscriptional gene repressors involved in the control of almost every biological process. Allelic variants in these regions may be an important source of phenotypic diversity and contribute to disease susceptibility. We analyzed the genomic organization of 325 human miRNAs (release 7.1, miRBase) to construct a panel of 768 single-nucleotide polymorphisms (SNPs) covering approximately 1 Mb of genomic DNA, including 131 isolated miRNAs (40%) and 194 miRNAs arranged in 48 miRNA clusters, as well as their 5-kb flanking regions. Of these miRNAs, 37% were inside known protein-coding genes, which were significantly associated with biological functions regarding neurological, psychological or nutritional disorders. SNP coverage analysis revealed a lower SNP density in miRNAs compared with the average of the genome, with only 24 SNPs located in the 325 miRNAs studied. Further genotyping of 340 unrelated Spanish individuals showed that more than half of the SNPs in miRNAs were either rare or monomorphic, in agreement with the reported selective constraint on human miRNAs. A comparison of the minor allele frequencies between Spanish and HapMap population samples confirmed the applicability of this SNP panel to the study of complex disorders among the Spanish population, and revealed two miRNA regions, hsa-mir-26a-2 in the CTDSP2 gene and hsa-mir-128-1 in the R3HDM1 gene, showing geographical allelic frequency variation among the four HapMap populations, probably because of differences in natural selection. The designed miRNA SNP panel could help to identify still hidden links between miRNAs and human disease.
Resumo:
Background: The aim of this report is to describe the main characteristics of the design, including response rates, of the Cornella Health Interview Survey Follow-up Study. Methods: The original cohort consisted of 2,500 subjects (1,263 women and 1,237 men) interviewed as part of the 1994 Cornella Health Interview Study. A record linkage to update the address and vital status of the cohort members was carried out using, first a deterministic method, and secondly a probabilistic one, based on each subject's first name and surnames. Subsequently, we attempted to locate the cohort members to conduct the phone follow-up interviews. A pilot study was carried out to test the overall feasibility and to modify some procedures before the field work began. Results: After record linkage, 2,468 (98.7%) subjects were successfully traced. Of these, 91 (3.6%) were deceased, 259 (10.3%) had moved to other towns, and 50 (2.0%) had neither renewed their last municipal census documents nor declared having moved. After using different strategies to track and to retain cohort members, we traced 92% of the CHIS participants. From them, 1,605 subjects answered the follow-up questionnaire. Conclusion: The computerized record linkage maximized the success of the follow-up that was carried out 7 years after the baseline interview. The pilot study was useful to increase the efficiency in tracing and interviewing the respondents.
Resumo:
This paper introduces Collage, a high-level IMS-LD compliant authoring tool that is specialized for CSCL (Computer-Supported Collaborative Learning). Nowadays CSCL is a key trend in elearning since it highlights the importance of social interactions as an essential element of learning. CSCL is an interdisciplinary domain, which demands participatory design techniques that allow teachers to get directly involved in design activities. Developing CSCL designs using LD is a difficult task for teachers since LD is a complex technical specification and modelling collaborative characteristics can be tricky. Collage helps teachers in the process of creating their own potentially effective collaborative Learning Designs by reusing and customizing patterns, according to the requirements of a particular learning situation. These patterns, called Collaborative Learning Flow Patterns (CLFPs), represent best practices that are repetitively used by practitioners when structuring the flow of (collaborative) learning activities. An example of an LD that can be created using Collage is illustrated in the paper. Preliminary evaluation results show that teachers, with experience in CL but without LD knowledge, can successfully design real collaborative learning experiences using Collage.
Resumo:
Several superstructure design methodologies have been developed for low volume road bridges by the Iowa State University Bridge Engineering Center. However, to date no standard abutment designs have been developed. Thus, there was a need to establish an easy to use design methodology in addition to generating generic abutment standards and other design aids for the more common substructure systems used in Iowa. The final report for this project consists of three volumes. The first volume (this volume) summarizes the research completed in this project. A survey of the Iowa County Engineers was conducted from which it was determined that while most counties use similar types of abutments, only 17 percent use some type of standard abutment designs or plans. A literature review revealed several possible alternative abutment systems for future use on low volume road bridges in addition to two separate substructure lateral load analysis methods. These consisted of a linear and a non-linear method. The linear analysis method was used for this project due to its relative simplicity and the relative accuracy of the maximum pile moment when compared to values obtained from the more complex non-linear analysis method. The resulting design methodology was developed for single span stub abutments supported on steel or timber piles with a bridge span length ranging from 20 to 90 ft and roadway widths of 24 and 30 ft. However, other roadway widths can be designed using the foundation design template provided. The backwall height is limited to a range of 6 to 12 ft, and the soil type is classified as cohesive or cohesionless. The design methodology was developed using the guidelines specified by the American Association of State Highway Transportation Officials Standard Specifications, the Iowa Department of Transportation Bridge Design Manual, and the National Design Specifications for Wood Construction. The second volume introduces and outlines the use of the various design aids developed for this project. Charts for determining dead and live gravity loads based on the roadway width, span length, and superstructure type are provided. A foundation design template was developed in which the engineer can check a substructure design by inputting basic bridge site information. Tables published by the Iowa Department of Transportation that provide values for estimating pile friction and end bearing for different combinations of soils and pile types are also included. Generic standard abutment plans were developed for which the engineer can provide necessary bridge site information in the spaces provided. These tools enable engineers to design and detail county bridge substructures more efficiently. The third volume provides two sets of calculations that demonstrate the application of the substructure design methodology developed in this project. These calculations also verify the accuracy of the foundation design template. The printouts from the foundation design template are provided at the end of each example. Also several tables provide various foundation details for a pre-cast double tee superstructure with different combinations of soil type, backwall height, and pile type.
Resumo:
Several superstructure design methodologies have been developed for low volume road bridges by the Iowa State University Bridge Engineering Center. However, to date no standard abutment designs have been developed. Thus, there was a need to establish an easy to use design methodology in addition to generating generic abutment standards and other design aids for the more common substructure systems used in Iowa. The final report for this project consists of three volumes. The first volume summarizes the research completed in this project. A survey of the Iowa County Engineers was conducted from which it was determined that while most counties use similar types of abutments, only 17 percent use some type of standard abutment designs or plans. A literature review revealed several possible alternative abutment systems for future use on low volume road bridges in addition to two separate substructure lateral load analysis methods. These consisted of a linear and a non-linear method. The linear analysis method was used for this project due to its relative simplicity and the relative accuracy of the maximum pile moment when compared to values obtained from the more complex non-linear analysis method. The resulting design methodology was developed for single span stub abutments supported on steel or timber piles with a bridge span length ranging from 20 to 90 ft and roadway widths of 24 and 30 ft. However, other roadway widths can be designed using the foundation design template provided. The backwall height is limited to a range of 6 to 12 ft, and the soil type is classified as cohesive or cohesionless. The design methodology was developed using the guidelines specified by the American Association of State Highway Transportation Officials Standard Specifications, the Iowa Department of Transportation Bridge Design Manual, and the National Design Specifications for Wood Construction. The second volume introduces and outlines the use of the various design aids developed for this project. Charts for determining dead and live gravity loads based on the roadway width, span length, and superstructure type are provided. A foundation design template was developed in which the engineer can check a substructure design by inputting basic bridge site information. Tables published by the Iowa Department of Transportation that provide values for estimating pile friction and end bearing for different combinations of soils and pile types are also included. Generic standard abutment plans were developed for which the engineer can provide necessary bridge site information in the spaces provided. These tools enable engineers to design and detail county bridge substructures more efficiently. The third volume (this volume) provides two sets of calculations that demonstrate the application of the substructure design methodology developed in this project. These calculations also verify the accuracy of the foundation design template. The printouts from the foundation design template are provided at the end of each example. Also several tables provide various foundation details for a pre-cast double tee superstructure with different combinations of soil type, backwall height, and pile type.
Resumo:
Several superstructure design methodologies have been developed for low volume road bridges by the Iowa State University Bridge Engineering Center. However, to date no standard abutment designs have been developed. Thus, there was a need to establish an easy to use design methodology in addition to generating generic abutment standards and other design aids for the more common substructure systems used in Iowa. The final report for this project consists of three volumes. The first volume summarizes the research completed in this project. A survey of the Iowa County Engineers was conducted from which it was determined that while most counties use similar types of abutments, only 17 percent use some type of standard abutment designs or plans. A literature review revealed several possible alternative abutment systems for future use on low volume road bridges in addition to two separate substructure lateral load analysis methods. These consisted of a linear and a non-linear method. The linear analysis method was used for this project due to its relative simplicity and the relative accuracy of the maximum pile moment when compared to values obtained from the more complex non-linear analysis method. The resulting design methodology was developed for single span stub abutments supported on steel or timber piles with a bridge span length ranging from 20 to 90 ft and roadway widths of 24 and 30 ft. However, other roadway widths can be designed using the foundation design template provided. The backwall height is limited to a range of 6 to 12 ft, and the soil type is classified as cohesive or cohesionless. The design methodology was developed using the guidelines specified by the American Association of State Highway Transportation Officials Standard Specifications, the Iowa Department of Transportation Bridge Design Manual, and the National Design Specifications for Wood Construction. The second volume (this volume) introduces and outlines the use of the various design aids developed for this project. Charts for determining dead and live gravity loads based on the roadway width, span length, and superstructure type are provided. A foundation design template was developed in which the engineer can check a substructure design by inputting basic bridge site information. Tables published by the Iowa Department of Transportation that provide values for estimating pile friction and end bearing for different combinations of soils and pile types are also included. Generic standard abutment plans were developed for which the engineer can provide necessary bridge site information in the spaces provided. These tools enable engineers to design and detail county bridge substructures more efficiently. The third volume provides two sets of calculations that demonstrate the application of the substructure design methodology developed in this project. These calculations also verify the accuracy of the foundation design template. The printouts from the foundation design template are provided at the end of each example. Also several tables provide various foundation details for a pre-cast double tee superstructure with different combinations of soil type, backwall height, and pile type.
Resumo:
Our objective was to describe the interventions aimed at preventing a recurrent hip fracture, and other injurious falls, which were provided during hospitalization for a first hip fracture and during the two following years. A secondary objective was to study some potential determinants of these preventive interventions. The design of the study was an observational, two-year follow-up of patients hospitalized for a first hip fracture at the University Hospital of Lausanne, Switzerland. The participants were 163 patients (median age 82 years, 83% women) hospitalized in 1991 for a first hip fracture, among 263 consecutively admitted patients (84 did not meet inclusion criteria, e.g., age>50, no cancer, no high energy trauma, and 16 refused to participate). Preventive interventions included: medical investigations performed during the first hospitalization and aimed at revealing modifiable pathologies that raise the risk of injurious falls; use of medications acting on the risk of falls and fractures; preventive recommendations given by medical staff; suppression of environmental hazards; and use of home assistance services. The information was obtained from a baseline questionnaire, the medical record filled during the index hospitalization, and an interview conducted 2 years after the fracture. Potential predictors of the use of preventive interventions were: age; gender; destination after discharge from hospital; comorbidity; cognitive functioning; and activities of daily living. Bi- and multivariate associations between the preventive interventions and the potential predictors were measured. In hospital investigations to rule out medical pathologies raising the risk of fracture were performed in only 20 patients (12%). Drugs raising the risk of falls were reduced in only 17 patients (16%). Preventive procedures not requiring active collaboration by the patient (e.g., modifications of the environment) were applied in 68 patients (42%), and home assistance was provided to 67 patients (85% of the patients living at home). Bivariate analyses indicated that prevention was less often provided to patients in poor general conditions, but no ascertainment of this association was found in multivariate analyses. In conclusion, this study indicates that, in the study setting, measures aimed at preventing recurrent falls and injuries were rarely provided to patients hospitalized for a first hip fracture at the time of the study. Tertiary prevention could be improved if a comprehensive geriatric assessment were systematically provided to the elderly patient hospitalized for a first hip fracture, and passive preventive measures implemented.
Resumo:
Bridge approach settlement and the formation of the bump is a common problem in Iowa that draws upon considerable resources for maintenance and creates a negative perception in the minds of transportation users. This research study was undertaken to investigate bridge approach problems and develop new concepts for design, construction, and maintenance that will reduce this costly problem. As a result of the research described in this report, the following changes are suggested for implementation on a pilot test basis: • Use porous backfill behind the abutment and/or geocomposite drainage systems to improve drainage capacity and reduce erosion around the abutment. • On a pilot basis, connect the approach slab to the bridge abutment. Change the expansion joint at the bridge to a construction joint of 2 inch. Use a more effective joint sealing system at the CF joint. Change the abutment wall rebar from #5 to #7 for non-integral abutments. • For bridges with soft foundation or embankment soils, implement practices of better compaction, preloading, ground improvement, soil removal and replacement, or soil reinforcement that reduce time-dependent post construction settlements.
Resumo:
Collage is a pattern-based visual design authoring tool for the creation of collaborative learning scripts computationally modelled with IMS Learning Design (LD). The pattern-based visual approach aims to provide teachers with design ideas that are based on broadly accepted practices. Besides, it seeks hiding the LD notation so that teachers can easily create their own designs. The use of visual representations supports both the understanding of the design ideas and the usability of the authoring tool. This paper presents a multicase study comprising three different cases that evaluate the approach from different perspectives. The first case includes workshops where teachers use Collage. A second case implies the design of a scenario proposed by a third-party using related approaches. The third case analyzes a situation where students follow a design created with Collage. The cross-case analysis provides a global understanding of the possibilities and limitations of the pattern-based visual design approach.
Resumo:
Two important challenges that teachers are currently facing are the sharing and the collaborative authoring of their learning design solutions, such as didactical units and learning materials. On the one hand, there are tools that can be used for the creation of design solutions and only some of them facilitate the co-edition. However, they do not incorporate mechanisms that support the sharing of the designs between teachers. On the other hand, there are tools that serve as repositories of educational resources but they do not enable the authoring of the designs. In this paper we present LdShake, a web tool whose novelty is focused on the combined support for the social sharing and co-edition of learning design solutions within communities of teachers. Teachers can create and share learning designs with other teachers using different access rights so that they can read, comment or co-edit the designs. Therefore, each design solution is associated to a group of teachers able to work on its definition, and another group that can only see the design. The tool is generic in that it allows the creation of designs based on any pedagogical approach. However, it can be particularized in instances providing pre-formatted designs structured according to a specific didactic method (such as Problem-Based Learning, PBL). A particularized LdShake instance has been used in the context of Human Biology studies where teams of teachers are required to work together in the design of PBL solutions. A controlled user study, that compares the use of a generic LdShake and a Moodle system, configured to enable the creation and sharing of designs, has been also carried out. The combined results of the real and controlled studies show that the social structure, and the commenting, co-edition and publishing features of LdShake provide a useful, effective and usable approach for facilitating teachers' teamwork.
Resumo:
This workshop paper states that fostering active student participation both in face-to-face lectures / seminars and outside the classroom (personal and group study at home, the library, etc.) requires a certain level of teacher-led inquiry. The paper presents a set of strategies drawn from real practice in higher education with teacher-led inquiry ingredients that promote active learning. Thesepractices highlight the role of the syllabus, the importance of iterative learning designs, explicit teacher-led inquiry, and the implications of the context, sustainability and practitioners’ creativity. The strategies discussed in this paper can serve as input to the workshop as real cases that need to be represented in design and supported in enactment (with and without technologies).
Resumo:
BACKGROUND: The clinical profile and outcome of nosocomial and non-nosocomial health care-associated native valve endocarditis are not well defined. OBJECTIVE: To compare the characteristics and outcomes of community-associated and nosocomial and non-nosocomial health care-associated native valve endocarditis. DESIGN: Prospective cohort study. SETTING: 61 hospitals in 28 countries. PATIENTS: Patients with definite native valve endocarditis and no history of injection drug use who were enrolled in the ICE-PCS (International Collaboration on Endocarditis Prospective Cohort Study) from June 2000 to August 2005. MEASUREMENTS: Clinical and echocardiographic findings, microbiology, complications, and mortality. RESULTS: Health care-associated native valve endocarditis was present in 557 (34%) of 1622 patients (303 with nosocomial infection [54%] and 254 with non-nosocomial infection [46%]). Staphylococcus aureus was the most common cause of health care-associated infection (nosocomial, 47%; non-nosocomial, 42%; P = 0.30); a high proportion of patients had methicillin-resistant S. aureus (nosocomial, 57%; non-nosocomial, 41%; P = 0.014). Fewer patients with health care-associated native valve endocarditis had cardiac surgery (41% vs. 51% of community-associated cases; P < 0.001), but more of the former patients died (25% vs. 13%; P < 0.001). Multivariable analysis confirmed greater mortality associated with health care-associated native valve endocarditis (incidence risk ratio, 1.28 [95% CI, 1.02 to 1.59]). LIMITATIONS: Patients were treated at hospitals with cardiac surgery programs. The results may not be generalizable to patients receiving care in other types of facilities or to those with prosthetic valves or past injection drug use. CONCLUSION: More than one third of cases of native valve endocarditis in non-injection drug users involve contact with health care, and non-nosocomial infection is common, especially in the United States. Clinicians should recognize that outpatients with extensive out-of-hospital health care contacts who develop endocarditis have clinical characteristics and outcomes similar to those of patients with nosocomial infection. PRIMARY FUNDING SOURCE: None.
Resumo:
With the release of the new Mechanistic-Empirical Pavement Design Guide (MEPDG), pavement design has taken a “quantum” leap forward. The current 1993 design guide is solidly based on the empirical interpretation of the results of the 1960 American Association of State Highway and Transportation Officials (AASHTO) Road Test. This report seeks to outline the technical aspects of the new MEPDG. Full detail is essentially impossible and impractical, since the release of the MEPDG was accompanied by eighteen volumes of technical justification and background. Consequently, this report seeks only to provide a potential user with a practical understanding of the workings of the new guide, with only sufficient technical depth to aid in understanding.
Resumo:
Bridge approach settlement and the formation of the bump is a common problem in Iowa that draws upon considerable resources for maintenance and creates a negative perception in the minds of transportation users. This research study was undertaken to investigate bridge approach problems and develop new concepts for design, construction, and maintenance that will reduce this costly problem. As a result of the research described in this report, the following changes are suggested for implementation on a pilot test basis: • Use porous backfill behind the abutment and/or geocomposite drainage systems to improve drainage capacity and reduce erosion around the abutment. • On a pilot basis, connect the approach slab to the bridge abutment. Change the expansion joint at the bridge to a construction joint of 2 inch. Use a more effective joint sealing system at the CF joint. Change the abutment wall rebar from #5 to #7 for non-integral abutments. • For bridges with soft foundation or embankment soils, implement practices of better compaction, preloading, ground improvement, soil removal and replacement, or soil reinforcement that reduce time-dependent post construction settlements.
Resumo:
PURPOSE: To determine and compare the diagnostic performance of magnetic resonance imaging (MRI) and computed tomography (CT) for the diagnosis of tumor extent in advanced retinoblastoma, using histopathologic analysis as the reference standard. DESIGN: Systematic review and meta-analysis. PARTICIPANTS: Patients with advanced retinoblastoma who underwent MRI, CT, or both for the detection of tumor extent from published diagnostic accuracy studies. METHODS: Medline and Embase were searched for literature published through April 2013 assessing the diagnostic performance of MRI, CT, or both in detecting intraorbital and extraorbital tumor extension of retinoblastoma. Diagnostic accuracy data were extracted from included studies. Summary estimates were based on a random effects model. Intrastudy and interstudy heterogeneity were analyzed. MAIN OUTCOME MEASURES: Sensitivity and specificity of MRI and CT in detecting tumor extent. RESULTS: Data of the following tumor-extent parameters were extracted: anterior eye segment involvement and ciliary body, optic nerve, choroidal, and (extra)scleral invasion. Articles on MRI reported results of 591 eyes from 14 studies, and articles on CT yielded 257 eyes from 4 studies. The summary estimates with their 95% confidence intervals (CIs) of the diagnostic accuracy of conventional MRI at detecting postlaminar optic nerve, choroidal, and scleral invasion showed sensitivities of 59% (95% CI, 37%-78%), 74% (95% CI, 52%-88%), and 88% (95% CI, 20%-100%), respectively, and specificities of 94% (95% CI, 84%-98%), 72% (95% CI, 31%-94%), and 99% (95% CI, 86%-100%), respectively. Magnetic resonance imaging with a high (versus a low) image quality showed higher diagnostic accuracies for detection of prelaminar optic nerve and choroidal invasion, but these differences were not statistically significant. Studies reporting the diagnostic accuracy of CT did not provide enough data to perform any meta-analyses. CONCLUSIONS: Magnetic resonance imaging is an important diagnostic tool for the detection of local tumor extent in advanced retinoblastoma, although its diagnostic accuracy shows room for improvement, especially with regard to sensitivity. With only a few-mostly old-studies, there is very little evidence on the diagnostic accuracy of CT, and generally these studies show low diagnostic accuracy. Future studies assessing the role of MRI in clinical decision making in terms of prognostic value for advanced retinoblastoma are needed.