967 resultados para Deschampsia antarctica
Resumo:
Accurate simulation of ice-sheet surface mass balance requires higher spatial resolution than is afforded by typical atmosphere-ocean general circulation models (AOGCMs), owing, in particular, to the need to resolve the narrow and steep margins where the majority of precipitation and ablation occurs. We have developed a method for calculating mass-balance changes by combining ice-sheet average time-series from AOGCM projections for future centuries, both with information from high-resolution climate models run for short periods and with a 20 km ice-sheet mass-balance model. Antarctica contributes negatively to sea level on account of increased accumulation, while Greenland contributes positively because ablation increases more rapidly. The uncertainty in the results is about 20% for Antarctica and 35% for Greenland. Changes in ice-sheet topography and dynamics are not included, but we discuss their possible effects. For an annual- and area-average warming exceeding 4.5 +/- 0.9 K in Greenland and 3.1 +/- 0.8 K in the global average, the net surface mass balance of the Greenland ice sheet becomes negative, in which case it is likely that the ice sheet would eventually be eliminated, raising global-average sea level by 7 m.
Resumo:
The Earth’s global atmospheric electric circuit depends on the upper and lower atmospheric boundaries formed by the ionosphere and the planetary surface. Thunderstorms and electrified rain clouds drive a DC current (∼1 kA) around the circuit, with the current carried by molecular cluster ions; lightning phenomena drive the AC global circuit. The Earth’s near-surface conductivity ranges from 10−7 S m−1 (for poorly conducting rocks) to 10−2 S m−1 (for clay or wet limestone), with a mean value of 3.2 S m−1 for the ocean. Air conductivity inside a thundercloud, and in fair weather regions, depends on location (especially geomagnetic latitude), aerosol pollution and height, and varies from ∼10−14 S m−1 just above the surface to 10−7 S m−1 in the ionosphere at ∼80 km altitude. Ionospheric conductivity is a tensor quantity due to the geomagnetic field, and is determined by parameters such as electron density and electron–neutral particle collision frequency. In the current source regions, point discharge (coronal) currents play an important role below electrified clouds; the solar wind-magnetosphere dynamo and the unipolar dynamo due to the terrestrial rotating dipole moment also apply atmospheric potential differences. Detailed measurements made near the Earth’s surface show that Ohm’s law relates the vertical electric field and current density to air conductivity. Stratospheric balloon measurements launched from Antarctica confirm that the downward current density is ∼1 pA m−2 under fair weather conditions. Fortuitously, a Solar Energetic Particle (SEP) event arrived at Earth during one such balloon flight, changing the observed atmospheric conductivity and electric fields markedly. Recent modelling considers lightning discharge effects on the ionosphere’s electric potential (∼+250 kV with respect to the Earth’s surface) and hence on the fair weather potential gradient (typically ∼130 V m−1 close to the Earth’s surface. We conclude that cloud-to-ground (CG) lightning discharges make only a small contribution to the ionospheric potential, and that sprites (namely, upward lightning above energetic thunderstorms) only affect the global circuit in a miniscule way. We also investigate the effects of mesoscale convective systems on the global circuit.
Resumo:
Projections of stratospheric ozone from a suite of chemistry-climate models (CCMs) have been analyzed. In addition to a reference simulation where anthropogenic halogenated ozone depleting substances (ODSs) and greenhouse gases (GHGs) vary with time, sensitivity simulations with either ODS or GHG concentrations fixed at 1960 levels were performed to disaggregate the drivers of projected ozone changes. These simulations were also used to assess the two distinct milestones of ozone returning to historical values (ozone return dates) and ozone no longer being influenced by ODSs (full ozone recovery). The date of ozone returning to historical values does not indicate complete recovery from ODSs in most cases, because GHG-induced changes accelerate or decelerate ozone changes in many regions. In the upper stratosphere where CO2-induced stratospheric cooling increases ozone, full ozone recovery is projected to not likely have occurred by 2100 even though ozone returns to its 1980 or even 1960 levels well before (~2025 and 2040, respectively). In contrast, in the tropical lower stratosphere ozone decreases continuously from 1960 to 2100 due to projected increases in tropical upwelling, while by around 2040 it is already very likely that full recovery from the effects of ODSs has occurred, although ODS concentrations are still elevated by this date. In the midlatitude lower stratosphere the evolution differs from that in the tropics, and rather than a steady decrease in ozone, first a decrease in ozone is simulated from 1960 to 2000, which is then followed by a steady increase through the 21st century. Ozone in the midlatitude lower stratosphere returns to 1980 levels by ~2045 in the Northern Hemisphere (NH) and by ~2055 in the Southern Hemisphere (SH), and full ozone recovery is likely reached by 2100 in both hemispheres. Overall, in all regions except the tropical lower stratosphere, full ozone recovery from ODSs occurs significantly later than the return of total column ozone to its 1980 level. The latest return of total column ozone is projected to occur over Antarctica (~2045–2060) whereas it is not likely that full ozone recovery is reached by the end of the 21st century in this region. Arctic total column ozone is projected to return to 1980 levels well before polar stratospheric halogen loading does so (~2025–2030 for total column ozone, cf. 2050–2070 for Cly+60×Bry) and it is likely that full recovery of total column ozone from the effects of ODSs has occurred by ~2035. In contrast to the Antarctic, by 2100 Arctic total column ozone is projected to be above 1960 levels, but not in the fixed GHG simulation, indicating that climate change plays a significant role.
Resumo:
SCIENTIFIC SUMMARY Globally averaged total column ozone has declined over recent decades due to the release of ozone-depleting substances (ODSs) into the atmosphere. Now, as a result of the Montreal Protocol, ozone is expected to recover from the effects of ODSs as ODS abundances decline in the coming decades. However, a number of factors in addition to ODSs have led to and will continue to lead to changes in ozone. Discriminating between the causes of past and projected ozone changes is necessary, not only to identify the progress in ozone recovery from ODSs, but also to evaluate the effectiveness of climate and ozone protection policy options. Factors Affecting Future Ozone and Surface Ultraviolet Radiation • At least for the next few decades, the decline of ODSs is expected to be the major factor affecting the anticipated increase in global total column ozone. However, several factors other than ODS will affect the future evolution of ozone in the stratosphere. These include changes in (i) stratospheric circulation and temperature due to changes in long-lived greenhouse gas (GHG) abundances, (ii) stratospheric aerosol loading, and (iii) source gases of highly reactive stratospheric hydrogen and nitrogen compounds. Factors that amplify the effects of ODSs on ozone (e.g., stratospheric aerosols) will likely decline in importance as ODSs are gradually eliminated from the atmosphere. • Increases in GHG emissions can both positively and negatively affect ozone. Carbon dioxide (CO2)-induced stratospheric cooling elevates middle and upper stratospheric ozone and decreases the time taken for ozone to return to 1980 levels, while projected GHG-induced increases in tropical upwelling decrease ozone in the tropical lower stratosphere and increase ozone in the extratropics. Increases in nitrous oxide (N2O) and methane (CH4) concentrations also directly impact ozone chemistry but the effects are different in different regions. • The Brewer-Dobson circulation (BDC) is projected to strengthen over the 21st century and thereby affect ozone amounts. Climate models consistently predict an acceleration of the BDC or, more specifically, of the upwelling mass flux in the tropical lower stratosphere of around 2% per decade as a consequence of GHG abundance increases. A stronger BDC would decrease the abundance of tropical lower stratospheric ozone, increase poleward transport of ozone, and could reduce the atmospheric lifetimes of long-lived ODSs and other trace gases. While simulations showing faster ascent in the tropical lower stratosphere to date are a robust feature of chemistry-climate models (CCMs), this has not been confirmed by observations and the responsible mechanisms remain unclear. • Substantial ozone losses could occur if stratospheric aerosol loading were to increase in the next few decades, while halogen levels are high. Stratospheric aerosol increases may be caused by sulfur contained in volcanic plumes entering the stratosphere or from human activities. The latter might include attempts to geoengineer the climate system by enhancing the stratospheric aerosol layer. The ozone losses mostly result from enhanced heterogeneous chemistry on stratospheric aerosols. Enhanced aerosol heating within the stratosphere also leads to changes in temperature and circulation that affect ozone. • Surface ultraviolet (UV) levels will not be affected solely by ozone changes but also by the effects of climate change and by air quality change in the troposphere. These tropospheric effects include changes in clouds, tropospheric aerosols, surface reflectivity, and tropospheric sulfur dioxide (SO2) and nitrogen dioxide (NO2). The uncertainties in projections of these factors are large. Projected increases in tropospheric ozone are more certain and may lead to reductions in surface erythemal (“sunburning”) irradiance of up to 10% by 2100. Changes in clouds may lead to decreases or increases in surface erythemal irradiance of up to 15% depending on latitude. Expected Future Changes in Ozone Full ozone recovery from the effects of ODSs and return of ozone to historical levels are not synonymous. In this chapter a key target date is chosen to be 1980, in part to retain the connection to previous Ozone Assessments. Noting, however, that decreases in ozone may have occurred in some regions of the atmosphere prior to 1980, 1960 return dates are also reported. The projections reported on in this chapter are taken from a recent compilation of CCM simulations. The ozone projections, which also form the basis for the UV projections, are limited in their representativeness of possible futures since they mostly come from CCM simulations based on a single GHG emissions scenario (scenario A1B of Emissions Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, 2000) and a single ODS emissions scenario (adjusted A1 of the previous (2006) Ozone Assessment). Throughout this century, the vertical, latitudinal, and seasonal structure of the ozone distribution will be different from what it was in 1980. For this reason, ozone changes in different regions of the atmosphere are considered separately. • The projections of changes in ozone and surface clear-sky UV are broadly consistent with those reported on in the 2006 Assessment. • The capability of making projections and attribution of future ozone changes has been improved since the 2006 Assessment. Use of CCM simulations from an increased number of models extending through the entire period of ozone depletion and recovery from ODSs (1960–2100) as well as sensitivity simulations have allowed more robust projections of long-term changes in the stratosphere and of the relative contributions of ODSs and GHGs to those changes. • Global annually averaged total column ozone is projected to return to 1980 levels before the middle of the century and earlier than when stratospheric halogen loading returns to 1980 levels. CCM projections suggest that this early return is primarily a result of GHG-induced cooling of the upper stratosphere because the effects of circulation changes on tropical and extratropical ozone largely cancel. Global (90°S–90°N) annually averaged total column ozone will likely return to 1980 levels between 2025 and 2040, well before the return of stratospheric halogens to 1980 levels between 2045 and 2060. • Simulated changes in tropical total column ozone from 1960 to 2100 are generally small. The evolution of tropical total column ozone in models depends on the balance between upper stratospheric increases and lower stratospheric decreases. The upper stratospheric increases result from declining ODSs and a slowing of ozone destruction resulting from GHG-induced cooling. Ozone decreases in the lower stratosphere mainly result from an increase in tropical upwelling. From 1960 until around 2000, a general decline is simulated, followed by a gradual increase to values typical of 1980 by midcentury. Thereafter, although total column ozone amounts decline slightly again toward the end of the century, by 2080 they are no longer expected to be affected by ODSs. Confidence in tropical ozone projections is compromised by the fact that simulated decreases in column ozone to date are not supported by observations, suggesting that significant uncertainties remain. • Midlatitude total column ozone is simulated to evolve differently in the two hemispheres. Over northern midlatitudes, annually averaged total column ozone is projected to return to 1980 values between 2015 and 2030, while for southern midlatitudes the return to 1980 values is projected to occur between 2030 and 2040. The more rapid return to 1980 values in northern midlatitudes is linked to a more pronounced strengthening of the poleward transport of ozone due to the effects of increased GHG levels, and effects of Antarctic ozone depletion on southern midlatitudes. By 2100, midlatitude total column ozone is projected to be above 1980 values in both hemispheres. • October-mean Antarctic total column ozone is projected to return to 1980 levels after midcentury, later than in any other region, and yet earlier than when stratospheric halogen loading is projected to return to 1980 levels. The slightly earlier return of ozone to 1980 levels (2045–2060) results primarily from upper stratospheric cooling and resultant increases in ozone. The return of polar halogen loading to 1980 levels (2050–2070) in CCMs is earlier than in empirical models that exclude the effects of GHG-induced changes in circulation. Our confidence in the drivers of changes in Antarctic ozone is higher than for other regions because (i) ODSs exert a strong influence on Antarctic ozone, (ii) the effects of changes in GHG abundances are comparatively small, and (iii) projections of ODS emissions are more certain than those for GHGs. Small Antarctic ozone holes (areas of ozone <220 Dobson units, DU) could persist to the end of the 21st century. • March-mean Arctic total column ozone is projected to return to 1980 levels two to three decades before polar halogen loading returns to 1980 levels, and to exceed 1980 levels thereafter. While CCM simulations project a return to 1980 levels between 2020 and 2035, most models tend not to capture observed low temperatures and thus underestimate present-day Arctic ozone loss such that it is possible that this return date is biased early. Since the strengthening of the Brewer-Dobson circulation through the 21st century leads to increases in springtime Arctic column ozone, by 2100 Arctic ozone is projected to lie well above 1960 levels. Uncertainties in Projections • Conclusions dependent on future GHG levels are less certain than those dependent on future ODS levels since ODS emissions are controlled by the Montreal Protocol. For the six GHG scenarios considered by a few CCMs, the simulated differences in stratospheric column ozone over the second half of the 21st century are largest in the northern midlatitudes and the Arctic, with maximum differences of 20–40 DU between the six scenarios in 2100. • There remain sources of uncertainty in the CCM simulations. These include the use of prescribed ODS mixing ratios instead of emission fluxes as lower boundary conditions, the range of sea surface temperatures and sea ice concentrations, missing tropospheric chemistry, model parameterizations, and model climate sensitivity. • Geoengineering schemes for mitigating climate change by continuous injections of sulfur-containing compounds into the stratosphere, if implemented, would substantially affect stratospheric ozone, particularly in polar regions. Ozone losses observed following large volcanic eruptions support this prediction. However, sporadic volcanic eruptions provide limited analogs to the effects of continuous sulfur emissions. Preliminary model simulations reveal large uncertainties in assessing the effects of continuous sulfur injections. Expected Future Changes in Surface UV. While a number of factors, in addition to ozone, affect surface UV irradiance, the focus in this chapter is on the effects of changes in stratospheric ozone on surface UV. For this reason, clear-sky surface UV irradiance is calculated from ozone projections from CCMs. • Projected increases in midlatitude ozone abundances during the 21st century, in the absence of changes in other factors, in particular clouds, tropospheric aerosols, and air pollutants, will result in decreases in surface UV irradiance. Clear-sky erythemal irradiance is projected to return to 1980 levels on average in 2025 for the northern midlatitudes, and in 2035 for the southern midlatitudes, and to fall well below 1980 values by the second half of the century. However, actual changes in surface UV will be affected by a number of factors other than ozone. • In the absence of changes in other factors, changes in tropical surface UV will be small because changes in tropical total column ozone are projected to be small. By the middle of the 21st century, the model projections suggest surface UV to be slightly higher than in the 1960s, very close to values in 1980, and slightly lower than in 2000. The projected decrease in tropical total column ozone through the latter half of the century will likely result in clear-sky surface UV remaining above 1960 levels. Average UV irradiance is already high in the tropics due to naturally occurring low total ozone columns and high solar elevations. • The magnitude of UV changes in the polar regions is larger than elsewhere because ozone changes in polar regions are larger. For the next decades, surface clear-sky UV irradiance, particularly in the Antarctic, will continue to be higher than in 1980. Future increases in ozone and decreases in clear-sky UV will occur at slower rates than those associated with the ozone decreases and UV increases that occurred before 2000. In Antarctica, surface clear-sky UV is projected to return to 1980 levels between 2040 and 2060, while in the Arctic this is projected to occur between 2020 and 2030. By 2100, October surface clear-sky erythemal irradiance in Antarctica is likely to be between 5% below to 25% above 1960 levels, with considerable uncertainty. This is consistent with multi-model-mean October Antarctic total column ozone not returning to 1960 levels by 2100. In contrast, by 2100, surface clear-sky UV in the Arctic is projected to be 0–10% below 1960 levels.
Resumo:
We have examined the atmospheric water cycle of both Polar Regions, pole wards of 60°N and 60°S, using the ERA-Interim re-analysis and high-resolution simulations with the ECHAM5 model for both the present and future climate based on the IPCC, A1B scenario, representative of the last three decades of the 21st century. The annual precipitation in ERA-Interim amounts to ~17000 km3 and is more or less the same in the Arctic and the Antarctic, but it is composed differently. In the Arctic the annual evaporation is some 8000 km3 but some 3000 km3 less in the Antarctica where the net horizontal transport is correspondingly larger. The net water transport of the model is more intense than in ERA-Interim, in the Arctic the difference is 2.5% and in the Antarctic it is 6.2%. Precipitation and net horizontal transport in the Arctic has a maximum in August and September. Evaporation peaks in June and July. The seasonal cycle is similar in Antarctica with the highest precipitation in the austral autumn. The largest net transport occurs at the end of the major extra-tropical storm tracks in the Northern Hemisphere such as the eastern Pacific and eastern north Atlantic. The variability of the model is virtually identical to that of the re-analysis and there are no changes in variability between the present climate and the climate at the end of the 21st century when normalized with the higher level of moisture. The changes from year to year are substantial with the 20 and 30-year records being generally too short to identify robust trends in the hydrological cycle. In the A1B climate scenario the strength of the water cycle increases by some 25% in the Arctic and by 19% in the Antarctica, as measured by annual precipitation. The increase in the net horizontal transport is 29% and 22% respectively, and the increase in evaporation correspondingly less. The net transport follows closely the Clausius-Clapeyron relation. There is 2 a minor change in the annual cycle of the Arctic atmospheric water cycle with the maximum transport and precipitation occurring later in the year. There is a small imbalance of some 4-6% between the net transport and precipitation minus evaporation. We suggest that this is mainly due to the fact the transport is calculated from instantaneous 6-hourly data while precipitation and evaporation is accumulated over a 6 hour period. The residual difference is proportionally similar for all experiments and hardly varies from year to year.
Resumo:
Six land surface models and five global hydrological models participate in a model intercomparison project (WaterMIP), which for the first time compares simulation results of these different classes of models in a consistent way. In this paper the simulation setup is described and aspects of the multi-model global terrestrial water balance are presented. All models were run at 0.5 degree spatial resolution for the global land areas for a 15-year period (1985-1999) using a newly-developed global meteorological dataset. Simulated global terrestrial evapotranspiration, excluding Greenland and Antarctica, ranges from 415 to 586 mm year-1 (60,000 to 85,000 km3 year-1) and simulated runoff ranges from 290 to 457 mm year-1 (42,000 to 66,000 km3 year-1). Both the mean and median runoff fractions for the land surface models are lower than those of the global hydrological models, although the range is wider. Significant simulation differences between land surface and global hydrological models are found to be caused by the snow scheme employed. The physically-based energy balance approach used by land surface models generally results in lower snow water equivalent values than the conceptual degree-day approach used by global hydrological models. Some differences in simulated runoff and evapotranspiration are explained by model parameterizations, although the processes included and parameterizations used are not distinct to either land surface models or global hydrological models. The results show that differences between model are major sources of uncertainty. Climate change impact studies thus need to use not only multiple climate models, but also some other measure of uncertainty, (e.g. multiple impact models).
Resumo:
A number of transient climate runs simulating the last 120kyr have been carried out using FAMOUS, a fast atmosphere-ocean general circulation model (AOGCM). This is the first time such experiments have been done with a full AOGCM, providing a three-dimensional simulation of both atmosphere and ocean over this period. Our simulation thus includes internally generated temporal variability over periods from days to millennia, and physical, detailed representations of important processes such as clouds and precipitation. Although the model is fast, computational restrictions mean that the rate of change of the forcings has been increased by a factor of 10, making each experiment 12kyr long. Atmospheric greenhouse gases (GHGs), northern hemisphere ice sheets and variations in solar radiation arising from changes in the Earth's orbit are treated as forcing factors, and are applied either separately or combined in different experiments. The long-term temperature changes on Antarctica match well with reconstructions derived from ice-core data, as does variability on timescales longer than 10 kyr. Last Glacial Maximum (LGM) cooling on Greenland is reasonably well simulated, although our simulations, which lack ice-sheet meltwater forcing, do not reproduce the abrupt, millennial scale climate shifts seen in northern hemisphere climate proxies or their slower southern hemisphere counterparts. The spatial pattern of sea surface cooling at the LGM matches proxy reconstructions reasonably well. There is significant anti-correlated variability in the strengths of the Atlantic Meridional Overturning Circulation (AMOC) and the Antarctic Circumpolar Current (ACC) on timescales greater than 10kyr in our experiments. We find that GHG forcing weakens the AMOC and strengthens the ACC, whilst the presence of northern hemisphere ice-sheets strengthens the AMOC and weakens the ACC. The structure of the AMOC at the LGM is found to be sensitive to the details of the ice-sheet reconstruction used. The precessional component of the orbital forcing induces ~20kyr oscillations in the AMOC and ACC, whose amplitude is mediated by changes in the eccentricity of the Earth's orbit. These forcing influences combine, to first order, in a linear fashion to produce the mean climate and ocean variability seen in the run with all forcings.
Resumo:
There is intense scientific and public interest in the Intergovernmental Panel on Climate Change (IPCC) projections of sea level for the twenty-first century and beyond. The Fourth Assessment Report (AR4) projections, obtained by applying standard methods to the results of the World Climate Research Programme Coupled Model Experiment, includes estimates of ocean thermal expansion, the melting of glaciers and ice caps (G&ICs), increased melting of the Greenland Ice Sheet, and increased precipitation over Greenland and Antarctica, partially offsetting other contributions. The AR4 recognized the potential for a rapid dynamic ice sheet response but robust methods for quantifying it were not available. Illustrative scenarios suggested additional sea level rise on the order of 10 to 20 cm or more, giving a wide range in the global averaged projections of about 20 to 80 cm by 2100. Currently, sea level is rising at a rate near the upper end of these projections. Since publication of the AR4 in 2007, biases in historical ocean temperature observations have been identified and significantly reduced, resulting in improved estimates of ocean thermal expansion. Models that include all climate forcings are in good agreement with these improved observations and indicate the importance of stratospheric aerosol loadings from volcanic eruptions. Estimates of the volumes of G&ICs and their contributions to sea level rise have improved. Results from recent (but possibly incomplete) efforts to develop improved ice sheet models should be available for the 2013 IPCC projections. Improved understanding of sea level rise is paving the way for using observations to constrain projections. Understanding of the regional variations in sea level change as a result of changes in ocean properties, wind-stress patterns, and heat and freshwater inputs into the ocean is improving. Recently, estimates of sea level changes resulting from changes in Earth's gravitational field and the solid Earth response to changes in surface loading have been included in regional projections. While potentially valuable, semi-empirical models have important limitations, and their projections should be treated with caution
Resumo:
We review the sea-level and energy budgets together from 1961, using recent and updated estimates of all terms. From 1972 to 2008, the observed sea-level rise (1.8 ± 0.2 mm yr−1 from tide gauges alone and 2.1 ± 0.2 mm yr−1 from a combination of tide gauges and altimeter observations) agrees well with the sum of contributions (1.8 ± 0.4 mm yr−1) in magnitude and with both having similar increases in the rate of rise during the period. The largest contributions come from ocean thermal expansion (0.8 mm yr−1) and the melting of glaciers and ice caps (0.7 mm yr−1), with Greenland and Antarctica contributing about 0.4 mm yr−1. The cryospheric contributions increase through the period (particularly in the 1990s) but the thermosteric contribution increases less rapidly. We include an improved estimate of aquifer depletion (0.3 mm yr−1), partially offsetting the retention of water in dams and giving a total terrestrial storage contribution of −0.1 mm yr−1. Ocean warming (90% of the total of the Earth's energy increase) continues through to the end of the record, in agreement with continued greenhouse gas forcing. The aerosol forcing, inferred as a residual in the atmospheric energy balance, is estimated as −0.8 ± 0.4 W m−2 for the 1980s and early 1990s. It increases in the late 1990s, as is required for consistency with little surface warming over the last decade. This increase is likely at least partially related to substantial increases in aerosol emissions from developing nations and moderate volcanic activity
Resumo:
The separate effects of ozone depleting substances (ODSs) and greenhouse gases (GHGs) on forcing circulation changes in the Southern Hemisphere extratropical troposphere are investigated using a version of the Canadian Middle Atmosphere Model (CMAM) that is coupled to an ocean. Circulation-related diagnostics include zonal wind, tropopause pressure, Hadley cell width, jet location, annular mode index, precipitation, wave drag, and eddy fluxes of momentum and heat. As expected, the tropospheric response to the ODS forcing occurs primarily in austral summer, with past (1960-99) and future (2000-99) trends of opposite sign, while the GHG forcing produces more seasonally uniform trends with the same sign in the past and future. In summer the ODS forcing dominates past trends in all diagnostics, while the two forcings contribute nearly equally but oppositely to future trends. The ODS forcing produces a past surface temperature response consisting of cooling over eastern Antarctica, and is the dominant driver of past summertime surface temperature changes when the model is constrained by observed sea surface temperatures. For all diagnostics, the response to the ODS and GHG forcings is additive: that is, the linear trend computed from the simulations using the combined forcings equals (within statistical uncertainty) the sum of the linear trends from the simulations using the two separate forcings. Space time spectra of eddy fluxes and the spatial distribution of transient wave drag are examined to assess the viability of several recently proposed mechanisms for the observed poleward shift in the tropospheric jet.
Resumo:
The Intergovernmental Panel on Climate Change fourth assessment report, published in 2007 came to a more confident assessment of the causes of global temperature change than previous reports and concluded that ‘it is likely that there has been significant anthropogenic warming over the past 50 years averaged over each continent except Antarctica.’ Since then, warming over Antarctica has also been attributed to human influence, and further evidence has accumulated attributing a much wider range of climate changes to human activities. Such changes are broadly consistent with theoretical understanding, and climate model simulations, of how the planet is expected to respond. This paper reviews this evidence from a regional perspective to reflect a growing interest in understanding the regional effects of climate change, which can differ markedly across the globe. We set out the methodological basis for detection and attribution and discuss the spatial scales on which it is possible to make robust attribution statements. We review the evidence showing significant human-induced changes in regional temperatures, and for the effects of external forcings on changes in the hydrological cycle, the cryosphere, circulation changes, oceanic changes, and changes in extremes. We then discuss future challenges for the science of attribution. To better assess the pace of change, and to understand more about the regional changes to which societies need to adapt, we will need to refine our understanding of the effects of external forcing and internal variability
Resumo:
Layer clouds are globally extensive. Their lower edges are charged negatively by the fair weather atmospheric electricity current flowing vertically through them. Using polar winter surface meteorological data from Sodankyla ̈ (Finland) and Halley (Antarctica), we find that when meteorological diurnal variations are weak, an appreciable diurnal cycle, on average, persists in the cloud base heights, detected using a laser ceilometer. The diurnal cloud base heights from both sites correlate more closely with the Carnegie curve of global atmospheric electricity than with local meteorological measurements. The cloud base sensitivities are indistinguishable between the northern and southern hemispheres, averaging a (4.0 ± 0.5) m rise for a 1% change in the fair weather electric current density. This suggests that the global fair weather current, which is affected by space weather, cosmic rays and the El Nin ̃o Southern Oscillation, is linked with layer cloud properties.
Resumo:
Monthly averaged surface erythemal solar irradiance (UV-Ery) for local noon from 1960 to 2100 has been derived using radiative transfer calculations and projections of ozone, temperature and cloud change from 14 chemistry climate models (CCM), as part of the CCMVal-2 activity of SPARC. Our calculations show the influence of ozone depletion and recovery on erythemal irradiance. In addition, we investigate UV-Ery changes caused by climate change due to increasing greenhouse gas concentrations. The latter include effects of both stratospheric ozone and cloud changes. The derived estimates provide a global picture of the likely changes in erythemal irradiance during the 21st century. Uncertainties arise from the assumed scenarios, different parameterizations – particularly of cloud effects on UV-Ery – and the spread in the CCM projections. The calculations suggest that relative to 1980, annually mean UV-Ery in the 2090s will be on average 12% lower at high latitudes in both hemispheres, 3% lower at mid latitudes, and marginally higher (1 %) in the tropics. The largest reduction (16 %) is projected for Antarctica in October. Cloud effects are responsible for 2–3% of the reduction in UV-Ery at high latitudes, but they slightly moderate it at mid-latitudes (1 %). The year of return of erythemal irradiance to values of certain milestones (1965 and 1980) depends largely on the return of column ozone to the corresponding levels and is associated with large uncertainties mainly due to the spread of the model projections. The inclusion of cloud effects in the calculations has only a small effect of the return years. At mid and high latitudes, changes in clouds and stratospheric ozone transport by global circulation changes due to greenhouse gases will sustain the erythemal irradiance at levels below those in 1965, despite the removal of ozone depleting substances.
Resumo:
Rising sea level is perhaps the most severe consequence of climate warming, as much of the world’s population and infrastructure is located near current sea level (Lemke et al. 2007). A major rise of a metre or more would cause serious problems. Such possibilities have been suggested by Hansen and Sato (2011) who pointed out that sea level was several metres higher than now during the Holsteinian and Eemian interglacials (about 250,000 and 120,000 years ago, respectively), even though the global temperature was then only slightly higher than it is nowadays. It is consequently of the utmost importance to determine whether such a sea level rise could occur and, if so, how fast it might happen. Sea level undergoes considerable changes due to natural processes such as the wind, ocean currents and tidal motions. On longer time scales, the sea level is influenced by steric effects (sea water expansion caused by temperature and salinity changes of the ocean) and by eustatic effects caused by changes in ocean mass. Changes in the Earth’s cryosphere, such as the retreat or expansion of glaciers and land ice areas, have been the dominant cause of sea level change during the Earth’s recent history. During the glacial cycles of the last million years, the sea level varied by a large amount, of the order of 100 m. If the Earth’s cryosphere were to disappear completely, the sea level would rise by some 65 m. The scientific papers in the present volume address the different aspects of the Earth’s cryosphere and how the different changes in the cryosphere affect sea level change. It represents the outcome of the first workshop held within the new ISSI Earth Science Programme. The workshop took place from 22 to 26 March, 2010, in Bern, Switzerland, with the objective of providing an in-depth insight into the future of mountain glaciers and the large land ice areas of Antarctica and Greenland, which are exposed to natural and anthropogenic climate influences, and their effects on sea level change. The participants of the workshop are experts in different fields including meteorology, climatology, oceanography, glaciology and geodesy; they use advanced space-based observational studies and state-of-the-art numerical modelling.
Resumo:
The surface mass balance for Greenland and Antarctica has been calculated using model data from an AMIP-type experiment for the period 1979–2001 using the ECHAM5 spectral transform model at different triangular truncations. There is a significant reduction in the calculated ablation for the highest model resolution, T319 with an equivalent grid distance of ca 40 km. As a consequence the T319 model has a positive surface mass balance for both ice sheets during the period. For Greenland, the models at lower resolution, T106 and T63, on the other hand, have a much stronger ablation leading to a negative surface mass balance. Calculations have also been undertaken for a climate change experiment using the IPCC scenario A1B, with a T213 resolution (corresponding to a grid distance of some 60 km) and comparing two 30-year periods from the end of the twentieth century and the end of the twenty-first century, respectively. For Greenland there is change of 495 km3/year, going from a positive to a negative surface mass balance corresponding to a sea level rise of 1.4 mm/year. For Antarctica there is an increase in the positive surface mass balance of 285 km3/year corresponding to a sea level fall by 0.8 mm/year. The surface mass balance changes of the two ice sheets lead to a sea level rise of 7 cm at the end of this century compared to end of the twentieth century. Other possible mass losses such as due to changes in the calving of icebergs are not considered. It appears that such changes must increase significantly, and several times more than the surface mass balance changes, if the ice sheets are to make a major contribution to sea level rise this century. The model calculations indicate large inter-annual variations in all relevant parameters making it impossible to identify robust trends from the examined periods at the end of the twentieth century. The calculated inter-annual variations are similar in magnitude to observations. The 30-year trend in SMB at the end of the twenty-first century is significant. The increase in precipitation on the ice sheets follows closely the Clausius-Clapeyron relation and is the main reason for the increase in the surface mass balance of Antarctica. On Greenland precipitation in the form of snow is gradually starting to decrease and cannot compensate for the increase in ablation. Another factor is the proportionally higher temperature increase on Greenland leading to a larger ablation. It follows that a modest increase in temperature will not be sufficient to compensate for the increase in accumulation, but this will change when temperature increases go beyond any critical limit. Calculations show that such a limit for Greenland might well be passed during this century. For Antarctica this will take much longer and probably well into following centuries.