999 resultados para Deformable face mask


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study represents a preliminary step towards data-driven computation of contact dynamics during manipulation of deformable objects at two points of contact. A modeling approach is proposed that characterizes the individual interaction at both points and the mutual effects of the two interactions on each other via a set of parameters. Both global as well as local coordinate systems are tested for encoding the contact mechanics. Artificial neural networks are trained on simulated data to capture the object behavior. A comparison of test data with the output of the trained system reveals a mean squared error percentage between 1% and 3% for simple interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the problem of heterogeneous deformable model accuracy using the finite element methods (FEM). Classic FEM uses predefined shape functions for interpolation and does not account easily for regions of discontinuities. Extended finite element methods (XFEM) use enrichment functions to compensate for the change in an element degrees of freedom (DoFs) in deformable objects. The XFEM is an accurate and fast method as no remeshing is required. In this study we investigate the performance of XFEM and demonstrate how it may be applied to discontinuities of materials that exist in heterogeneous (piece-wise homogeneous) models. The results show realistic stress prediction compared to modeling the same objects with classic FEM.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One approach to the detection of curves at subpixel accuracy involves the reconstruction of such features from subpixel edge data points. A new technique is presented for reconstructing and segmenting curves with subpixel accuracy using deformable models. A curve is represented as a set of interconnected Hermite splines forming a snake generated from the subpixel edge information that minimizes the global energy functional integral over the set. While previous work on the minimization was mostly based on the Euler-Lagrange transformation, the authors use the finite element method to solve the energy minimization equation. The advantages of this approach over the Euler-Lagrange transformation approach are that the method is straightforward, leads to positive m-diagonal symmetric matrices, and has the ability to cope with irregular geometries such as junctions and corners. The energy functional integral solved using this method can also be used to segment the features by searching for the location of the maxima of the first derivative of the energy over the elementary curve set.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the limitation of current multilinear PCA based techniques, in terms of pro- hibitive computational cost of testing and poor gen- eralisation in some scenarios, when applied to large training databases. We define person-specific eigen-modes to obtain a set of projection bases, wherein a particular basis captures variation across light- ings and viewpoints for a particular person. A new recognition approach is developed utilizing these bases. The proposed approach performs on a par with the existing multilinear approaches, whilst sig- nificantly reducing the complexity order of the testing algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present novel ridge regression (RR) and kernel ridge regression (KRR) techniques for multivariate labels and apply the methods to the problem of face recognition. Motivated by the fact that the regular simplex vertices are separate points with highest degree of symmetry, we choose such vertices as the targets for the distinct individuals in recognition and apply RR or KRR to map the training face images into a face subspace where the training images from each individual will locate near their individual targets. We identify the new face image by mapping it into this face subspace and comparing its distance to all individual targets. An efficient cross-validation algorithm is also provided for selecting the regularization and kernel parameters. Experiments were conducted on two face databases and the results demonstrate that the proposed algorithm significantly outperforms the three popular linear face recognition techniques (Eigenfaces, Fisherfaces and Laplacianfaces) and also performs comparably with the recently developed Orthogonal Laplacianfaces with the advantage of computational speed. Experimental results also demonstrate that KRR outperforms RR as expected since KRR can utilize the nonlinear structure of the face images. Although we concentrate on face recognition in this paper, the proposed method is general and may be applied for general multi-category classification problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel dimensionality reduction algorithm for kernel based classification. In the feature space, the proposed algorithm maximizes the ratio of the squared between-class distance and the sum of the within-class variances of the training samples for a given reduced dimension. This algorithm has lower complexity than the recently reported kernel dimension reduction(KDR) for supervised learning. We conducted several simulations with large training datasets, which demonstrate that the proposed algorithm has similar performance or is marginally better compared with KDR whilst having the advantage of computational efficiency. Further, we applied the proposed dimension reduction algorithm to face recognition in which the number of training samples is very small. This proposed face recognition approach based on the new algorithm outperforms the eigenface approach based on the principle component analysis (PCA), when the training data is complete, that is, representative of the whole dataset.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we investigate the face recognition problem via energy histogram of the DCT coefficients. Several issues related to the recognition performance are discussed, In particular the issue of histogram bin sizes and feature sets. In addition, we propose a technique for selecting the classification threshold incrementally. Experimentation was conducted on the Yale face database and results indicated that the threshold obtained via the proposed technique provides a balanced recognition in term of precision and recall. Furthermore, it demonstrated that the energy histogram algorithm outperformed the well-known Eigenface algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two-dimensional Principal Component Analysis (2DPCA) is a robust method in face recognition. Much recent research shows that the 2DPCA is more reliable than the well-known PCA method in recognising human face. However, in many cases, this method tends to be overfitted to sample data. In this paper, we proposed a novel method named random subspace two-dimensional PCA (RS-2DPCA), which combines the 2DPCA method with the random subspace (RS) technique. The RS-2DPCA inherits the advantages of both the 2DPCA and RS technique, thus it can avoid the overfitting problem and achieve high recognition accuracy. Experimental results in three benchmark face data sets -the ORL database, the Yale face database and the extended Yale face database B - confirm our hypothesis that the RS-2DPCA is superior to the 2DPCA itself.