993 resultados para Deferred Taxes
Resumo:
In 1986, the Iowa DOT installed 700 feet of International Barrier Corporation (IBC) barrier between the 1-235 eastbound off ramp and the adjacent eastbound loop on ramp at 8th Street in West Des Moines. It is a 3 foot 6 inch high sand-filled galvanized sheet metal barrier. The bid price on this project was $130 per lineal foot. It was evaluated annually for four years. During this time, there have been no severe accidents where vehicles hit the barrier. There are scrapes and dents indicating minor accidents. The barrier has performed very well and required no maintenance. Due to its initial cost, the IBC barrier is not as cost-effective as portland cement concrete barrier rails.
Resumo:
In 1986, a 0.34 mile experimental section of polymerized asphalt cement (PAC30) concrete was placed in the westbound driving lane of Interstate 80 in western Iowa. It was used in a 2" asphalt concrete inlay using 20% recycled asphalt pavement. The virgin aggregate included 41% crushed gravel, 25% crushed quartzite and 14% natural sand. The evaluation of the project was severely limited when a 1987 reconstruction project extended into the experimental section leaving only 395 feet. Rut depths under a 4-foot gage were taken for a period of two years. No significant rutting occurred in the experimental polymerized section. The frequency of transverse cracking in the polymerized AC section was the same as that of the comparative AC-20 section. The asphalt paving mixture made with polymerized AC cost 120% of the cost of the conventional mix.
Resumo:
Audit report on the Mid-Iowa School Improvement Consortium, Carlisle, Iowa for the year ended June 30, 2013
Resumo:
The objective of this research study is to evaluate the performance, maintenance requirements and cost effectiveness of constructing reinforced slope along a concrete bikeway overpass with a Geogrid system such as manufactured by Tensar Corporation or Reinforced Earth Company. This final report consists of two separate reports - construction and performance. An earlier design report and work plan was submitted to the Iowa DOT in 1989. From the Design Report, it was determined that the reinforced slope would be the most economical system for this particular bikeway project. Preliminary cost estimates for other design alternatives including concrete retaining walls, gabions and sheet pile walls ranged from $204/L.F. to $220/L.F. The actual final construction cost of the reinforced slope with GEDGRIDS was around $112/L.F. Although, since the reinforced slope system was not feasible next to the bridge overpass because of design constraints, a fair cost comparison should reflect costs of constructing a concrete retaining wall. Including the concrete retaining wall costs raises the per lineal foot cost to around $122/L.F. In addition to this initial construction cost effectiveness of the reinforced slope, there has been little or no maintenance needed for this reinforced slope. It was noted that some edge mowing or weed whacking could be done near the concrete bikeway slab to improve the visual quality of the slope, but no work has been assigned to city crews. It was added that this kind of weed whacking over such steep slope is more difficult and there could possibly be more potential for work related injury. The geogrid reinforced slope has performed really well once the vegetation took control and prevented soil washing across the bikeway slab. To that end, interim erosion control measures might need to be considered in future projects. Some construction observations were noted. First, there i s no specialized experience or equipment required for a contractor to successfully build a low-to-medium geogrid reinforced slope structure. Second, the adaptability of the reinforced earth structure enables the designer to best fit the shape of the structure to the environment and could enhance aesthetic quality. Finally, a reinforced slope can be built with relatively soft soils provided differential settlements between facing are limited to one or two percent.
Resumo:
The road paving cost continues to increase and the backlog of projects waiting for funding is growing. Finding a more cost-effective way to use the available money to pave roads will result in more miles of road being paved with the same amount of money. This project is in Cass County on G35 between US 71 and Norway-Center. It consists of a thin layer of asphalt over a base designed to achieve stability while having some permeability. This project was paved in 1996. An asphalt cement concrete pavement was chosen for the project based on cost, convenience, and historic portland cement concrete problems in Cass County. The new pavement gives quicker access time to farms and residences.
Resumo:
A research project involving 2, 3, 4, and 5 in. (5.1, 7.6, 10.2, and 12.7 cm) of bonded portland cement concrete (PCC) overlay on a 1.3 mile (2.1 km) PCC pavement was conducted in Clayton County, Iowa, during September 1977, centering on the following objectives: (1) Determine the mixing and proportioning procedures required in using a conventional, central mix proportioning plant to produce a dense PCC mixture using standard mixes with super water reducing admixtures; (2) Determine the economics, longevity and maintenance performance of a bonded, thin-lift, non-reinforced PCC resurfacing course using conventional procedures, equipment and concrete paving mixtures both with and without super water reducing admixtures; and (3) Determine if an adequate bond between the existing pavement and an overlay of thin-lift, dense, non-reinforced PCC can be obtained with only special surface cleaning and no surface removal or grinding. The conclusions are as follows: (1) Normal mixing equipment and proportioning procedures could be used using a conventional central-mix proportioning plant. This was successful when used with super water reducing admixtures. Only minor changes need be made in procedures and timing. (2) The time has been too short since the completion of the project to determine how the new pavement will perform, however, initially it appears that the method is economical and no reason is seen at this time why the life of the pavement should not be comparable to an all new pavement. (3) The initial test results show that bond strength, regardless of which method of cleaning is used, scarifying, sand blasting or water blasting, far exceed what is considered the minimum bond strength of 200 psi (1379 kPa) except where the paint stripes were intentionally left, thus showing that the paint must be removed. (4) It appears that either cement and water grout or sand, cement and water grout may be used and still obtain the required bond.
Resumo:
Fine limestone aggregate is abundant in several areas of the state. The aggregate is a by-product from the production of concrete stone. Roller compacted concrete (RCC) is a portland cement concrete mixture that can be produced with small size aggregate. The objective of the research was to evaluate limestone screenings in RCC mixes. Acceptable strength and freeze/thaw durability were obtained with 300 pounds of portland cement and 260 pounds of Class C fly ash. The amount of aggregate passing the number 200 sieve ranged from 4.6 to 11 percent. Field experience in Iowa indicates that the aggregate gradation is more critical to placeability and compactibility than laboratory strength and durability.
Resumo:
In November of 1966, an investigation of the rigid Class I asphalt treated base specification, requiring 70 per cent crushed limestone, was initiated. It was felt that it might be possible to modify the need for crushed particles, in the construction of basis on heavy duty roads, at a savings, by using more local materials, without sacrificing strength and/or durability. This is a short study on typical sources of pit run gravel, with various percentages of limestone. It is conducted with an eye open to the possibility that our specifications may be modified. The possibility that further investigation may be desirable is not ignored.
Resumo:
This report presents the results of a number of detailed Iowa access management case studies. Case studies were selected to provide a cross-section of locations and community sizes in Iowa as well as a variety of project types. Generally, access management projects completed during the mid-1990s were chosen as case studies. Projects ranging from driveway consolidation to full raised medians were analyzed on a before and after basis in terms of traffic safety, traffic operations, and adjacent business vitality. Sources of information used for the case study analysis included: road project files; traffic accident records; state sales tax records; and personal interviews of business owners, business customers, and local officials. The case study results from Iowa essentially confirm results of previous access management research from around the nation. Recent access in Iowa had significant, positive impacts in terms of traffic safety. The average reduction of annual accidents and accident rates on improved roadways was approximately 40%. Improvements in access management also led to significantly better roadway operations for most case studies. Although a small number of individual businesses do report sales losses and/or customer complaints once projects have been completed, access management projects in Iowa have not had an adverse impact on the majority of businesses located along them. In fact, some access management projects in Iowa seem to have contributed to an improved business environment along the corridors that have been improved. The results from the Iowa case studies presented in this report will be used to develop access management education materials for Iowa transportation professionals and other audiences interested in the impacts of access management.
Resumo:
Most research current to the time of these projects was focused on use of Superpave mix designs on higher volume roads. Low volume roads have different requirements in terms of mix design, aggregate types, aggregate sources and project budgets. The purpose of this research was to determine if the Superpave mix design strategy for low volume roads was practical and economical. Eight projects were selected in five counties. The projects were completed in the summer of 1998. Performance evaluation of the resulting pavements was carried out annually. There was no significant increase in costs related to the use of Superpave. Nor were there any significant construction issues. There were some differences noted in placement and compaction in the field, but these were not serious.
Resumo:
Many rural communities have developed around highways or major county roads; as a result, the main street through small rural communities is often part of a high-speed rural highway. Highways and county roads are characterized by high speeds outside the city limits; they then transition into a reduced speed section through the rural community. Consequently, drivers passing through the community often enter at high speeds and maintain those speeds as they travel through the community. Traffic calming in small rural communities along major roadways is common in Europe, but the U.S. does not have experience with applying traffic-calming measures outside of major urban areas. The purpose of the project was to evaluate traffic-calming treatments on the major road through small Iowa communities using either single-measure low-cost or gateway treatments. The project was partially funded by the Iowa Highway Research Board (IHRB). The focus of the IHRB portion was to evaluate single-measure, low-cost, traffic-calming measures that are appropriate to major roads through small rural communities. Seven different low-cost traffic treatments were implemented and evaluated in five rural Iowa communities. The research evaluated the use of two gateway treatments in Union and Roland; five single-measure treatments (speed table, on-pavement “SLOW” markings, a driver speed feedback sign, tubular markers, and on-pavement entrance treatments) were evaluated in Gilbert, Slater, and Dexter.
Resumo:
In recent years, ultra-thin whitetopping (UTW) has evolved as a viable rehabilitation technique for deteriorated asphalt cement concrete (ACC) pavement. Numerous UTW projects have been constructed and tested, enabling researchers to identify key elements contributing to their successful performance. These elements include foundation support, interface bonding condition, portland cement concrete (PCC) overlay thickness, synthetic fiber reinforcement usage, joint spacing, and joint sealing. The interface bonding condition is the most important of these elements. It enables the pavement to act as a composite structure, thus reducing tensile stresses and allowing an ultra-thin PCC overlay to perform as intended. The Iowa Department of Transportation (Iowa DOT) UTW project (HR-559) initiated UTW in Iowa. The project is located on Iowa Highway 21 between Iowa Highway 212 and U.S. Highway 6 in Iowa County, near Belle Plaine, Iowa. The objective of this research was to investigate the interface bonding condition between an ultra-thin PCC overlay and an ACC base over time, considering the previously mentioned variables. This research lasted for five years, at which time it was extended an additional five years. The new phase of the project was initiated by removing cracked panels existing in the 2-inch thick PCC sections and replacing them with three inches of PCC. The project extension (TR 432) will provide an increased understanding of slab bonding conditions over a longer period, as well as knowledge regarding the behavior of the newly rehabilitated areas. In order to accomplish the goals of the project extension, Falling Weight Deflectometer (FWD) testing will continue to be conducted. Laboratory testing, field strain gage implementation, and coring will no longer be conducted. This report documents the planning and construction of the rehabilitation of HR 559 and the beginning of TR 432 during August of 1999.
Resumo:
The main sources of coarse aggregate for secondary slip form paving in Southwest Iowa exhibit undesirable "D" cracking. "D" cracking is a discoloration of the concrete caused by fine, hairline cracks. These cracks are caused by the freezing and thawing of moisture inside the coarse aggregate. The cracks are often hour glass shaped, are parallel to each other, and occur along saw joints. The B-4, a typical secondary mix, utilizes 50% fine aggregate and 50% coarse aggregate. It has been proposed that a concrete mix with less coarse aggregate and more fine aggregate might impede this type of deterioration. The Nebraska Standard 47B Mix, a 70% fine aggregate, and 30% coarse aggregate mix, as used by Nebraska Department of Roads produces concrete with ultimate strengths in excess of 4500 psi but because of the higher cost of cement (it is a six bag per cubic yard mix) is not competitive with our present secondary mixes. The sands of Southwest Iowa generally have poorer mortar strengths than the average Iowa Sand. Class V Aggregate also found in Southwest Iowa has a coarser sand fraction, therefore it has a better mortar strength, but exhibits an acidic reaction and therefore must be·used with limestone. This illustrates the need to find a mix for use in Southwest Iowa that possesses adequate strength and satisfactory durability at a low cost. The purpose of this study is to determine a concrete mix with an acceptable cement content which will produce physical properties similar to that of our present secondary paving mixes.
Resumo:
Iowa Highway Commission Project HR-33, "Characteristics of Chemically Treated Roadway Surfaces", was investigated at the Iowa Engineering Experiment Station under Project 375-S. The purpose of the project as originally proposed was to study the physical and chemical characteristics of chemically treated roadway surfaces. All chemical treatments were to be included, but only sodium chloride and calcium chloride treated roadways were investigated. The uses of other types of chemical treatment were not discovered until recently, notably spent sulfite liquor and a commercial additive. Costs of stabilized secondary roads in Hamilton County averaged $4300.00 per mile even though remanent soil-aggregate material was used. The cost of similar roads in Franklin County was $4400.00 per mile. The Franklin County road surfaces were constructed entirely from materials that were hauled to the road site. Costs in Butler County were a little over $3000.00 per mile some eight years ago. Chemical investigations indicate that calcium chloride and sodium chloride are lost through leaching. Approximately 95 percent of the sodium chloride appears to have been lost, and nearly 65 percent of the calcium chloride has disappeared. The latter value may be much in error since surface dressings of calcium chloride are commonly used and have not been taken into account. Clay contents of the soil-aggregate-chemical stabilized roads range from about 6 to ll percent, averaging 8 or 9 percent. The thicknesses of stabilized mats are usually 2 to 4 inches, with in-place densities ranging from 130 to 145 pcf. Generally the densities found in sodium chloride stabilized roads were slightly higher than those found in the calcium chloride stabilized roads.
Resumo:
In 1975, Kossuth County had 492 miles of asphalt pavements, sixty percent of which were between l5 and 20 years old. Many of these roadways were in need of rehabilitation. Normally, asphaltic resurfacing would be the procedure for correcting the pavement deterioration. There are areas within the state of Iowa which do not have Class I aggregate readily available for asphalt cement concrete paving. Kossuth County is one of those areas. The problem is typified by this project. Limestone aggregate to be incorporated into the asphalt resurfacing had to be hauled 53 miles from the quarry to the plant site. The cost of hauling good quality aggregate coupled with the increasing cost of asphalt cement encouraged Kossuth County to investigate the possibility of asphaltic pavement recycling. Another problem, possibly unique to Kossuth County, was the way the original roadways had been constructed. A good clay soil was present under 3 to 4 feet of poorer soil. In order to obtain this good clay soil for subbase construction, the roadway ditches were excavated 1 to 3 feet into the clay soil layer. The resultant roadway tops were several feet above the surrounding farm land and generally less than 26 feet wide. To bring the existing roadway up to current minimum design width, there were two choices: One was to widen the roadway by truck hauling soil and constructing new 4 to 6 foot shoulders. The cost of widening by this method averaged $36,000 per mile in 1975. The other choice was to remove the old pavement and widen the roadway by lowering the grade line. The desire to provide wider paved roadways gave Kossuth County the additional incentive needed to proceed with a pavement recycling project.