934 resultados para Dantzig–Wolfe decomposition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Literature cited: p. 45-46.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bibliography: pt. 1, p. 37-38.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

v.I. Introduction. Alcohols, neutral alcoholic derivatives, sugars, starch and its isomers, vegetable acids, etc. 2d ed., rev. & enl.--v.II. Fixed oils, fats, waxes, glycerol, nitroglycerin and nitroglycerin explosives. Hydrocarbons, petroleum and coal-tar products, asphalt, phenols and creosotes. 2d ed., rev. & enl.--v. III, pt.I. Acid derivatives of phenols, aromatic acids, resins, and essential oils. Tannins, dyes, and colouring matters, writing inks. 2d ed., rev. & enl.--v. III, pt.II. Amines and ammonium bases, hydrarzines, bases from tar, vegetable alkaloids. 2d ed., rev. and enl. [1892] --v.III, pt.III. Vegetable alkaloids (concluded), non-basic vegetable bitter principles, animal bases, animal acids, cyanogen and its derivatives. 2d ed., rev. & enl. [1896]--v.IV. Proteids and albuminous principles, proteoïds or albuminoïds. 2d ed., rev. & enl. 1898.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From Philosophical transactions for 1808, v. 98, p. 1-44, 341-346.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (doctoral)--

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We give a detailed exposition of the theory of decompositions of linearised polynomials, using a well-known connection with skew-polynomial rings with zero derivative. It is known that there is a one-to-one correspondence between decompositions of linearised polynomials and sub-linearised polynomials. This correspondence leads to a formula for the number of indecomposable sub-linearised polynomials of given degree over a finite field. We also show how to extend existing factorisation algorithms over skew-polynomial rings to decompose sub-linearised polynomials without asymptotic cost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent research involving starch grains recovered from archaeological contexts has highlighted the need for a review of the mechanisms and consequences of starch degradation specifically relevant to archaeology. This paper presents a review of the plant physiological and soil biochemical literature pertinent to the archaeological investigation of starch grains found as residues on artefacts and in archaeological sediments. Preservative and destructive factors affecting starch survival, including enzymes, clays, metals and soil properties, as well as differential degradation of starches of varying sizes and amylose content, were considered. The synthesis and character of chloroplast-formed 'transitory' starch grains, and the differentiation of these from 'storage' starches formed in tubers and seeds were also addressed. Findings of the review include the higher susceptibility of small starch grains to biotic degradation, and that protective mechanisms are provided to starch by both soil aggregates and artefact surfaces. These findings suggest that current reasoning which equates higher numbers of starch grains on an artefact than in associated sediments with the use of the artefact for processing starchy plants needs to be reconsidered. It is argued that an increased understanding of starch decomposition processes is necessary to accurately reconstruct both archaeological activities involving starchy plants and environmental change investigated through starch analysis. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information on decomposition of harvest residues may assist in the maintenance of soil fertility in second rotation (2R) hoop pine plantations (Araucaria cunninghamii Aiton ex A. Cunn.) of subtropical Australia. The experiment was undertaken to determine the dynamics of residue decomposition and fate of residue-derived N. We used N-15-labeled hoop pine foliage, branch, and stem material in microplots, over a 30-mo period following harvesting. We examined the decomposition of each component both singly and combined, and used C-13 cross-polarization and magic-angle spinning nuclear magnetic resonance (C-13 CPMAS NMR) to chart C transformations in decomposing foliage. Residue-derived N-15 was immobilized in the 0- to 5-cm soil layer, with approximately 40% N-15 recovery in the soil from the combined residues by the end of the 30-mo period. Total recovery of N-15 in residues and soil varied between 60 and 80% for the combined-residue microplots, with 20 to 40% of the residue N-15 apparently lost. When residues were combined within microplots the rate of foliage decomposition decreased by 30% while the rate of branch and stem decomposition increased by 50 and 40% compared with rates for these components when decomposed separately. Residue decomposition studies should include a combined-residue treatment. Based on C-15 CPMAS NMR spectra for decomposing foliage, we obtained good correlations for methoxyl C, aryl C, carbohydrate C and phenolic C with residue mass, N-15 enrichment, and total N. The ratio of carbohydrate C to methoxyl C may be useful as an indicator of harvest residue decomposition in hoop pine plantations.