936 resultados para DROSOPHILA-MELANOGASTER RDNA
Resumo:
Ten strains of two species in the Drosophila buzzatii cluster (D. serido and D. seriema) were examined as to esterase patterns using polyacrylamide gel electrophoresis. The migration rate of esterases, and their substrate specificity to alpha and beta naphthyl acetates, were analysed. Other esterase features such as inhibition behaviour, presence in males and females and location in the head, thorax or abdomen of flies, were also examined. The present data,together with results obtained by others for eight strains of D. koepferae, D. serido, D. seriema and D. buzzatii, show that 69 bands have been detected in the eighteen strains studied. This total number of bands was used for comparison of strains and species by similarity index, analysis of dependence and cluster analysis. The comparisons confirmed the existence of a high degree of similarity among D. seriema strains and among D. koepferae strains, but indicated differentiation among the D. serido strains. Two strains (D69R2 and D69R5) which differed from the others of the latter species, showed closer affinities with D. buzzatii, which indicates the need for further work on those strains classified as D. serido.
Resumo:
In this paper we present the first report of the occurrence of a binucleate Rhizoctonia spp. causing hypocotyl and root rot in kale in Brazil. Rhizoctonia spp. were isolated from kale (Brassica oleracea var. acephala) with symptoms of hypocotyl and root rot. The isolates, characterized as binucleate Rhizoctonia spp., did not show an anastomosis reaction with any of the binucleate Rhizoctonia spp. testers used. The pathogenicity of the isolates was tested under greenhouse conditions; all isolates were pathogenic and showed different symptom severities on kale. The ITS-5.8S rDNA sequences of kale isolates and 50 testers (25 binucleate Rhizoctonia spp. and 25 Rhizoctonia solani) were compared in order to characterize the genetic identity of Rhizoctonia spp. infecting kale. The kale isolates showed genetic identities ranging from 99.3 to 99.8% and were phylogenetically closely related to CAG 7 (AF354084), with identities of 98.5 and 98.7%. It is suggested that the binucleate Rhizoctonia spp. causing hypocotyl and root rot on kale Brazil comprises a new AG not yet described.
Resumo:
Drosophila serido is considered to be a superspecies consisting of two species: D. serido, from Brazil and D. koepferae from Argentina and Bolivia. However this probably does not express the entire evolutionary complexity of its populations. Isofemale lines A95F3 (from Brazil) and B20D2 (from Argentina), at present representing, respectively, the first and second species, were analyzed for fertility and fecundity in pair-mating intracrosses and intercrosses, as well as for development time, banding patterns and asynapsis of polytene chromosomes in the isofemale lines and their hybrids.Although variations in experimental conditions resulted in some variability in the results, in general A95F3 fertility and fecundity were lower than in B20D2. Intercrosses of A95F3 females and B20D2 males showed lower fertility and fecundity than the reciprocal crosses, following more closely characteristics of the mother strains. This is in contrast to the results obtained by Fontdevilla et al. (An. Entomol. Soc. Amer. 81: 380-385, 1988) and may be due to the different geographic origin of D. serido strains they used in crosses to B20D2. This difference and others cited in the literature relative to aedeagus morphology, karyotype characteristics, inversion polymorphisms and reproductive isolation strongly indicate that A95F3 and D. serido from the State of Bahia, Brazil are not a single evolutionary entity, reinforcing the idea of greater complexity of the superspecies D. serido than is known today.The reproductive isolation mechanisms found operating between A95F3 and B20D2 were prezygotic and postzygotic, the latter included mortality at the larvae stage in both directions of crosses and sterility of male hybrids in intercrosses involving B20D2 females and A95F3 males. The two isofemale lines differed in egg-adult development time, which was also differently affected by culture medium composition.A95F3 and B20D2 also showed differences in the banding patterns of proximal regions of polytene chromosomes 2, 3 and X, a fixed inversion in chromosome 3 (here named 3t), apparently not described previously, and a high degree of asynapsis in hybrids.These observations, especially those related to reproductive isolation and chromosomal differentiation (including the karyotype, previously described, and the differentiation of banding patterns, described in this paper), as well as the extensive asynapsis observed in hybrids reinforces the distinct species status of A95F3 and B20D2 isofemale lines.
Resumo:
Drosophila sturtevanti (37 strains) showed eighteen inversions, five new and thirteen previously described. Among these strains, 24 were maintained for seven to 21 years under laboratory conditions, eight for less than 1 year, and six were natural samples analysed in the first generation after collection. Flies from natural samples were the most polymorphic in the number of different inversions as well as in the frequency of flies bearing heterozygous inversions. In all cases, chromosome III presented the greatest number of inversions, and most of them occurred in strains from the Amazonian region. The data obtained were consistent with the hypothesis that the inversion variability of a species is proportional to the variability of its habitats.
Resumo:
Fertility (percentage of fertile crosses) and the degree of synapsis in salivary gland chromosomes in isofemale lines of Drosophila buzzatii, D. serido, D. koepferae and D. seriema were analysed. D. buzzatii was completely sterile in intercrosses with strains from the other species except for D. koepferae. The other species intercrossed to a greater or lesser degree, but also differed between crossing directions. Homologous pairing in salivary gland preparations of strains and hybrids conformed with the data on fertility. The lowest degree of synapsis was present in hybrids between D. koepferae and D. buzzatii, D. seriema and D. koepferae and D. koepferae and D. serido. These species also exhibited the lowest degree of reproductive compatibility. Hybrids between D. seriema and D. serido showed an intermediate degree of synapsis (pairing absent in the proximal and distal chromosome ends), as well as fertility greater than that found in the other interspecific crosses. Results of the fertility of crosses involving strains of a single species, compared with data in the literature, indicated that intraspecific divergence occurred in D. serido and D. koepferae.
Resumo:
The occurrence, number of insertion sites and antisense RNA expression of micropia transposable element were studied in 26 species that belong to three subgroups (mercatorum, mulleri and hydei) of repleta group of Drosophila. Under high specific PCR, micropia sequences were detected in 11 species, but under less stringent condition, this retrotransposon was detected in all species. The widespread distribution of micropia suggests that this element was already present at the common ancestor of the repleta group of Drosophila. Southern blot analysis showed a variation from 0 to 17 different insertion sites and the occurrence of male-specific sequences. We found that the expression of the 1.0 kb micropia antisense RNA is variable among the species and tissues (soma and testis), which suggests that more than one mechanism regulates transposition in these species. Variation of amplification by PCR and of antisense RNA expression, as well as divergence of nucleotide sequences among the species allow us to suggest that at least two subfamilies of micropia transposable element are harbored by the genome of this species group.
Resumo:
There are few reports on the genomic organization of 5S rDNA in fish species. To characterize the 5S rDNA nucleotide sequence and chromosomal localization in the Neotropical fishes of the genus Brycon, 5S rDNA copies from seven species were generated by PCR. The nucleotide sequences of the coding region (5S rRNA gene) and the nontranscribed spacer (NTS) were determined, revealing that the 5S rRNA genes were highly conserved, while the NTSs were widely variable among the species analyzed. Moreover, two classes of NTS were detected in each species, characterized by base substitutions and insertions-deletions. Using fluorescence in situ hybridization (FISH), two 5S rDNA chromosome loci that could be related to the two 5S rDNA NTS classes were observed in at least one of the species studied. 5S rDNA sequencing and chromosomal localization permitted the characterization of Brycon spp. and suggest a higher similarity among some of them. The data obtained indicate that the 5S rDNA can be an useful genetic marker for species identification and evolutionary studies.
Resumo:
To address understanding the organization of the 5S rRNA multigene family in the fish genome, the nucleotide sequence and organization array of 5S rDNA were investigated in the genus Leporinus, a representative freshwater fish group of South American fauna. PCR, subgenomic library screening, genomic blotting, fluorescence in situ hybridization, and DNA sequencing were employed in this study. Two arrays of 5S rDNA were identified for all species investigated, one consisting of monomeric repeat units of around 200 bp and another one with monomers of 900 bp. These 5S rDNA arrays were characterized by distinct NTS sequences (designated NTS-I and NTS-II for the 200- and 900-bp monomers, respectively); however, their coding sequences were nearly identical. The 5S rRNA genes were clustered in two chromosome loci, a major one corresponding to the NTS-I sites and a minor one corresponding to the NTS-II sites. The NTS-I sequence was variable among Leporinus spp., whereas the NTS-II was conserved among them and even in the related genus Schizodon. The distinct 5S rDNA arrays might characterize two 5S rRNA gene subfamilies that have been evolving independently in the genome.