995 resultados para DOMAIN TRANSFER
Resumo:
Efficient initiation of SV40 DNA replication requires transcription factors that bind auxiliary sequences flanking the minimally required origin. To evaluate the possibility that transcription factors may activate SV40 replication by acting on the chromatin structure of the origin, we used an in vivo replication system in which we targeted GAL4 fusion proteins to the minimally required origin. We found that the proline-rich transcriptional activation domain of nuclear factor I (NF-I), which has been previously shown to interact with histone H3, specifically activates replication. Evaluation of a series of deletion and point mutants of NF-I indicates that the H3-binding domain and the replication activity coincide perfectly. Assays with other transcription factors, such as Sp1, confirmed the correlation between the interaction with H3 and the activation of replication. These findings imply that transcription factors such as NF-I can activate SV40 replication via direct interaction with chromatin components, thereby contributing to the relief of nucleosomal repression at the SV40 origin.
Resumo:
We analyze the process of informational exchange through complex networks by measuring network efficiencies. Aiming to study nonclustered systems, we propose a modification of this measure on the local level. We apply this method to an extension of the class of small worlds that includes declustered networks and show that they are locally quite efficient, although their clustering coefficient is practically zero. Unweighted systems with small-world and scale-free topologies are shown to be both globally and locally efficient. Our method is also applied to characterize weighted networks. In particular we examine the properties of underground transportation systems of Madrid and Barcelona and reinterpret the results obtained for the Boston subway network.
Resumo:
This document summarizes the discussion and findings of the 4th workshop held on October 27–28, 2015 in Frankfort, Kentucky as part of the Technology Transfer Intelligent Compaction Consortium (TTICC) Transportation Pooled Fund (TPF-5(233)) study. The TTICC project is led by the Iowa Department of Transportation (DOT) and partnered by the following state DOTs: California, Georgia, Iowa, Kentucky, Missouri, Ohio, Pennsylvania, Virginia, and Wisconsin. The workshop was hosted by the Kentucky Transportation Cabinet and was organized by the Center for Earthworks Engineering Research (CEER) at Iowa State University of Science and Technology. The objective of the workshop was to generate a focused discussion to identify the research, education, and implementation goals necessary for advancing intelligent compaction for earthworks and asphalt. The workshop consisted of a review of the TTICC goals, state DOT briefings on intelligent compaction implementation activities in their state, voting and brainstorming sessions on intelligent compaction road map research and implementation needs, and identification of action items for TTICC, industry, and Federal Highway Administration (FHWA) on each of the road map elements to help accelerate implementation of the technology. Twenty-three attendees representing the state DOTs participating in this pooled fund study, the FHWA, Iowa State University, University of Kentucky, and industry participated in this workshop.
Resumo:
CREB is a cAMP-responsive nuclear DNA-binding protein that binds to cAMP response elements and stimulates gene transcription upon activation of the cAMP signalling pathway. The protein consists of an amino-terminal transcriptional transactivation domain and a carboxyl-terminal DNA-binding domain (bZIP domain) comprised of a basic region and a leucine zipper involved in DNA recognition and dimerization, respectively. Recently, we discovered a testis-specific transcript of CREB that contains an alternatively spliced exon encoding multiple stop codons. CREB encoded by this transcript is a truncated protein lacking the bZIP domain. We postulated that the antigen detected by CREB antiserum in the cytoplasm of germinal cells is the truncated CREB that must also lack its nuclear translocation signal (NTS). To test this hypothesis we prepared multiple expression plasmids encoding carboxyl-terminal deletions of CREB and transiently expressed them in COS-1 cells. By Western immunoblot analysis as well as immunocytochemistry of transfected cells, we show that CREB proteins truncated to amino acid 286 or shorter are sequestered in the cytoplasm, whereas a CREB of 295 amino acids is translocated into the nucleus. Chimeric CREBs containing a heterologous NTS fused to the first 248 or 261 amino acids of CREB are able to drive the translocation of the protein into the nucleus. Thus, the nine amino acids in the basic region involved in DNA recognition between positions 287 and 295 (RRKKKEYVK) of CREB contain the NTS. Further, mutation of the lysine at position 290 in CREB to an asparagine diminishes nuclear translocation of the protein.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Geleophysic (GD) and acromicric dysplasia (AD) belong to the acromelic dysplasia group and are both characterized by severe short stature, short extremities, and stiff joints. Although AD has an unknown molecular basis, we have previously identified ADAMTSL2 mutations in a subset of GD patients. After exome sequencing in GD and AD cases, we selected fibrillin 1 (FBN1) as a candidate gene, even though mutations in this gene have been described in Marfan syndrome, which is characterized by tall stature and arachnodactyly. We identified 16 heterozygous FBN1 mutations that are all located in exons 41 and 42 and encode TGFβ-binding protein-like domain 5 (TB5) of FBN1 in 29 GD and AD cases. Microfibrillar network disorganization and enhanced TGFβ signaling were consistent features in GD and AD fibroblasts. Importantly, a direct interaction between ADAMTSL2 and FBN1 was demonstrated, suggesting a disruption of this interaction as the underlying mechanism of GD and AD phenotypes. Although enhanced TGFβ signaling caused by FBN1 mutations can trigger either Marfan syndrome or GD and AD, our findings support the fact that TB5 mutations in FBN1 are responsible for short stature phenotypes.
Resumo:
The CD8 molecule is a glycoprotein expressed on a subset of mature T lymphocytes. It has been postulated to be a receptor for class I major histocompatibility complex molecules. In the mouse, CD8 is a heterodimer composed of Ly-2 and Ly-3 chains. We have isolated and analyzed cDNA and cosmid clones corresponding to the Ly-3 subunit. One of the isolated, cosmid clones was subsequently transfected, alone or in combination with the Ly-2 gene, into mouse Ltk- cells. Analysis of the Ly-2,3 molecules expressed at the surface of the double transfectants indicated that they are serologically and biochemically indistinguishable from their normal counterparts expressed on lymphoid cells. Ltk- cells transfected with the Ly-2 gene alone were shown to react with a subset of anti-CD8 monoclonal antibodies whereas Ly-3 transfectants did not stain with any of the anti-Ly-3 antibodies employed in this study. Since at least one of these antibodies (53-5.8) has been previously shown to recognize an epitope which is retained on the Ly-3 subunit after dissociation of the heterodimeric Ly-2,3 complex, these observations suggest that the expression of the Ly-2 polypeptide is required to permit the detectable cell surface expression of the antigenic determinants carried by the Ly-3 subunit.
Resumo:
Dominant missense mutations in FLNB, encoding the actin-cross linking protein filamin B (FLNB), cause a broad range of skeletal dysplasias with varying severity by an unknown mechanism. Here these FLNB mutations are shown to cluster in exons encoding the actin-binding domain (ABD) and filamin repeats surrounding the flexible hinge 1 region of the FLNB rod domain. Despite being positioned in domains that bind actin, it is unknown if these mutations perturb cytoskeletal structure. Expression of several full-length FLNB constructs containing ABD mutations resulted in the appearance of actin-containing cytoplasmic focal accumulations of the substituted protein to a degree that was correlated with the severity of the associated phenotypes. In contrast, study of mutations leading to substitutions in the FLNB rod domain that result in the same phenotypes as ABD mutations demonstrated that with only one exception disease-associated substitutions, surrounding hinge 1 demonstrated no tendency to form actin-filamin foci. The exception, a substitution in filamin repeat 6, lies within a region previously implicated in filamin-actin binding. These data are consistent with mutations in the ABD conferring enhanced actin-binding activity but suggest that substitutions affecting repeats near the flexible hinge region of FLNB precipitate the same phenotypes through a different mechanism.
Resumo:
OBJECTIVE: Interleukin-1 (IL-1) mediates ischemia-reperfusion injury and graft inflammation after heart transplantation. IL-1 affects target cells through two distinct types of transmembrane receptors, type-1 receptor (IL-1R1), which transduces the signal, and the non-signaling type-2 receptor (IL-1R2), which acts as a ligand sink that subtracts IL-1beta from IL-1R1. We analyzed the efficacy of adenovirus (Ad)-mediated gene transfer of a soluble IL-1R2-Ig fusion protein in delaying cardiac allograft rejection and the mechanisms underlying the protective effect. METHODS: IL-1 inhibition by IL-1R2-Ig was tested using an in vitro functional assay whereby endothelial cells preincubated with AdIL-1R2-Ig or control virus were stimulated with recombinant IL-1beta or tumor necrosis factor-alpha (TNF-alpha), and urokinase-type plasminogen activator (u-PA) induction was measured by zymography. AdIL-1R2-Ig was delivered to F344 rat donor hearts ex vivo, which were placed in the abdominal position in LEW hosts. Intragraft inflammatory cell infiltrates and proinflammatory cytokine expression were analyzed by immunohistochemistry and real-time reverse transcriptase-polymerase chain reaction (RT-PCR), respectively. RESULTS: IL-1R2-Ig specifically inhibited IL-1beta-induced u-PA responses in vitro. IL-1R2-Ig gene transfer reduced intragraft monocytes/macrophages and CD4(+) cell infiltrates (p<0.05), TNF-alpha and transforming growth factor-beta (TGF-beta) expression (p<0.05), and prolonged graft survival (15.6+/-5.7 vs 10.3+/-2.5 days with control vector and 10.1+/-2.1 days with buffer alone; p<0.01). AdIL-1R2-Ig combined with a subtherapeutic regimen of cyclosporin A (CsA) was superior to CsA alone (19.4+/-3.0 vs 15.9+/-1.8 days; p<0.05). CONCLUSIONS: Soluble IL-1 type-2 receptor gene transfer attenuates cardiac allograft rejection in a rat model. IL-1 inhibition may be useful as an adjuvant therapy in heart transplantation.
Resumo:
An emerging therapeutic approach for Duchenne muscular dystrophy is the transplantation of autologous myogenic progenitor cells genetically modified to express dystrophin. The use of this approach is challenged by the difficulty in maintaining these cells ex vivo while keeping their myogenic potential, and ensuring sufficient transgene expression following their transplantation and myogenic differentiation in vivo. We investigated the use of the piggyBac transposon system to achieve stable gene expression when transferred to cultured mesoangioblasts and into murine muscles. Without selection, up to 8% of the mesoangioblasts expressed the transgene from 1 to 2 genomic copies of the piggyBac vector. Integration occurred mostly in intergenic genomic DNA and transgene expression was stable in vitro. Intramuscular transplantation of mouse Tibialis anterior muscles with mesoangioblasts containing the transposon led to sustained myofiber GFP expression in vivo. In contrast, the direct electroporation of the transposon-donor plasmids in the mouse Tibialis muscles in vivo did not lead to sustained transgene expression despite molecular evidence of piggyBac transposition in vivo. Together these findings provide a proof-of-principle that piggyBac transposon may be considered for mesoangioblast cell-based therapies of muscular dystrophies.
Resumo:
This paper proposes a novel high capacity robust audio watermarking algorithm by using the high frequency band of the wavelet decomposition at which the human auditory system (HAS) is not very sensitive to alteration. The main idea is to divide the high frequency band into frames and, for embedding, to change the wavelet samples depending on the average of relevant frame¿s samples. The experimental results show that the method has a very high capacity (about 11,000 bps), without significant perceptual distortion (ODG in [¿1 ,0] and SNR about 30dB), and provides robustness against common audio signal processing such as additive noise, filtering, echo and MPEG compression (MP3).
Resumo:
Many audio watermarking schemes divide the audio signal into several blocks such that part of the watermark is embedded into each of them. One of the key issues in these block-oriented watermarking schemes is to preserve the synchronisation, i.e. to recover the exact position of each block in the mark recovery process. In this paper, a novel time domain synchronisation technique is presented together with a new blind watermarking scheme which works in the Discrete Fourier Transform (DFT or FFT) domain. The combined scheme provides excellent imperceptibility results whilst achieving robustness against typical attacks. Furthermore, the execution of the scheme is fast enough to be used in real-time applications. The excellent transparency of the embedding algorithm makes it particularly useful for professional applications, such as the embedding of monitoring information in broadcast signals. The scheme is also compared with some recent results of the literature.
Resumo:
The World Wide Web, the world¿s largest resource for information, has evolved from organizing information using controlled, top-down taxonomies to a bottom up approach that emphasizes assigning meaning to data via mechanisms such as the Social Web (Web 2.0). Tagging adds meta-data, (weak semantics) to the content available on the web. This research investigates the potential for repurposing this layer of meta-data. We propose a multi-phase approach that exploits user-defined tags to identify and extract domain-level concepts. We operationalize this approach and assess its feasibility by application to a publicly available tag repository. The paper describes insights gained from implementing and applying the heuristics contained in the approach, as well as challenges and implications of repurposing tags for extraction of domain-level concepts.
Resumo:
This article describes the developmentof an Open Source shallow-transfer machine translation system from Czech to Polish in theApertium platform. It gives details ofthe methods and resources used in contructingthe system. Although the resulting system has quite a high error rate, it is still competitive with other systems.
Resumo:
Nanoparticles are increasingly used in various fields, including biomedicine and electronics. One application utilizes the opacifying effect of nano-TiO(2), which is frequently used as pigment in cosmetics. Although TiO(2) is believed to be biologically inert, an emerging literature reports increased incidence of respiratory diseases in people exposed to TiO(2). Here, we show that nano-TiO(2) and nano-SiO(2), but not nano-ZnO, activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome, leading to IL-1β release and in addition, induce the regulated release of IL-1α. Unlike other particulate Nlrp3 agonists, nano-TiO(2)-dependent-Nlrp3 activity does not require cytoskeleton-dependent phagocytosis and induces IL-1α/β secretion in nonphagocytic keratinocytes. Inhalation of nano-TiO(2) provokes lung inflammation which is strongly suppressed in IL-1R- and IL-1α-deficient mice. Thus, the inflammation caused by nano-TiO(2) in vivo is largely caused by the biological effect of IL-1α. The current use of nano-TiO(2) may present a health hazard due to its capacity to induce IL-1R signaling, a situation reminiscent of inflammation provoked by asbestos exposure.