997 resultados para DNA DELIVERY
Resumo:
ABSTRACT: In sexual assault cases, autosomal DNA analysis of gynecological swabs is a challenge, as the presence of a large quantity of female material may prevent the detection of the male DNA. A solution to this problem is differential DNA extraction, but as there are different protocols, it was decided to test their efficiency on simulated casework samples. Four difficult samples were sent to the nine Swiss laboratories active in the forensic genetics. They used their routine protocols to separate the epithelial cell fraction, enriched with the non-sperm DNA, from the sperm fraction. DNA extracts were then sent to the organizing laboratory for analysis. Estimates of male to female DNA ratio without differential DNA extraction ranged from 1:38 to 1:339, depending on the semen used to prepare the samples. After differential DNA extraction, most of the ratios ranged from 1:12 to 9:1, allowing the detection of the male DNA. Compared to direct DNA extraction, cell separation resulted in losses of 94-98% of the male DNA. As expected, more male DNA was generally present in the sperm than in the epithelial cell fraction. However, for about 30% of the samples, the reverse trend was observed. The recovery of male and female DNA was highly variable depending on the laboratories. Experimental design similar to the one used in this study may help for local protocol testing and improvement.
Resumo:
Oral administration of rabbit secretory IgA (sIgA) to adult BALB/c mice induced IgA+, IgM+, and IgG+ lymphoblasts in the Peyer's patches, whose fusion with myeloma cells resulted in hybridomas producing IgA, IgM, and IgG1 antibodies to the secretory component (SC). This suggests that SC could serve as a vector to target protective epitopes into mucosal lymphoid tissue and elicit an immune response. We tested this concept by inserting a Shigella flexneri invasin B epitope into SC, which, following reassociation with IgA, was delivered orally to mice. To identify potential insertion sites at the surface of SC, we constructed a molecular model of the first and second Ig-like domains of rabbit SC. A surface epitope recognized by an SC-specific antibody was mapped to the loop connecting the E and F beta strands of domain I. This 8-amino acid sequence was replaced by a 9-amino acid linear epitope from S. flexneri invasin B. We found that cellular trafficking of recombinant SC produced in mammalian CV-1 cells was drastically altered and resulted in a 50-fold lower rate of secretion. However, purification of chimeric SC could be achieved by Ni2+-chelate affinity chromatoraphy. Both wild-type and chimeric SC bound to dimeric IgA, but not to monomeric IgA. Reconstituted sIgA carrying the invasin B epitope within the SC moiety triggers the appearance of seric and salivary invasin B-specific antibodies. Thus, neo-antigenized sIgA can serve as a mucosal vaccine delivery system inducing systemic and mucosal immune responses.
Resumo:
Efficient initiation by the DNA polymerase of adenovirus type 2 requires nuclear factor I (NFI), a cellular sequence-specific transcription factor. Three functions of NFI--dimerization, DNA binding, and activation of DNA replication--are colocalized within the N-terminal portion of the protein. To define more precisely the role of NFI in viral DNA replication, a series of site-directed mutations within the N-terminal domain have been generated, thus allowing the separation of all three functions contained within this region. Impairment of the dimerization function prevents sequence-specific DNA binding and in turn abolishes the NFI-mediated activation of DNA replication. NFI DNA-binding activity, although necessary, is not sufficient to activate the initiation of adenovirus replication. A distinct class of NFI mutations that abolish the recruitment of the viral DNA polymerase to the origin also prevent the activation of replication. Thus, a direct interaction of NFI with the viral DNA polymerase complex is required to form a stable and active preinitiation complex on the origin and is responsible for the activation of replication by NFI.
Resumo:
AbstractOBJECTIVEPresenting methodology for transferring knowledge to improve maternal outcomes in natural delivery based on scientific evidence.METHOD: An intervention study conducted in the maternity hospital of Itapecerica da Serra, SP, with 50 puerperal women and 102 medical records from July to November 2014. The PACES tool from Joanna Briggs Institute, consisting of pre-clinical audit (phase 1), implementation of best practice (phase 2) and Follow-up Clinical Audit (phase 3) was used. Data were analyzed by comparing results of phases 1 and 3 with Fisher's exact test and a significance level of 5%.RESULTSThe vertical position was adopted by the majority of puerperal women with statistical difference between phases 1 and 3. A significant increase in bathing/showering, walking and massages for pain relief was found from the medical records. No statistical difference was found in other practices and outcomes. Barriers and difficulties in the implementation of evidence-based practices have been identified. Variables were refined, techniques and data collection instruments were verified, and an intervention proposal was made.CONCLUSIONThe study found possibilities for implementing a methodology of practices based on scientific evidence for assistance in natural delivery.
Resumo:
Most bacterial chromosomes contain homologs of plasmid partitioning (par) loci. These loci encode ATPases called ParA that are thought to contribute to the mechanical force required for chromosome and plasmid segregation. In Vibrio cholerae, the chromosome II (chrII) par locus is essential for chrII segregation. Here, we found that purified ParA2 had ATPase activities comparable to other ParA homologs, but, unlike many other ParA homologs, did not form high molecular weight complexes in the presence of ATP alone. Instead, formation of high molecular weight ParA2 polymers required DNA. Electron microscopy and three-dimensional reconstruction revealed that ParA2 formed bipolar helical filaments on double-stranded DNA in a sequence-independent manner. These filaments had a distinct change in pitch when ParA2 was polymerized in the presence of ATP versus in the absence of a nucleotide cofactor. Fitting a crystal structure of a ParA protein into our filament reconstruction showed how a dimer of ParA2 binds the DNA. The filaments formed with ATP are left-handed, but surprisingly these filaments exert no topological changes on the right-handed B-DNA to which they are bound. The stoichiometry of binding is one dimer for every eight base pairs, and this determines the geometry of the ParA2 filaments with 4.4 dimers per 120 A pitch left-handed turn. Our findings will be critical for understanding how ParA proteins function in plasmid and chromosome segregation.
Resumo:
Addition of insulin, IGF I or IGF II to serum-free cultures of fetal rat brain cells (gestation day 15/16) significantly stimulates DNA synthesis. The dose-response curves show that IGF I is more potent than insulin; half maximal stimulation of [3H]thymidine incorporation is obtained at about 0.4 nM IGF I and 14 nM insulin, respectively. Cultures initiated 2 days later (gestation day 17/18) showed a decreased responsiveness to both peptides. No additive effect was observed after combined addition of both peptides at near-maximal doses. Both peptides show a latency of action of about 12-18 h. In the presence of either IGF or insulin, neuronal as well as glial enzymes are increased, suggesting that neuronal and glial precursor cell division is influenced. IGF I and IGF II interact with a specific binding site for which insulin competes very weakly; however IGF I and IGF II bind with relatively high affinity to the insulin specific binding site. The present results support the hypothesis that both insulin and IGF stimulate mitotic activity by interacting with specific somatomedin receptors and suggest a physiological role of IGF in the developing brain.
Resumo:
The mission of the Encyclopedia of DNA Elements (ENCODE) Project is to enable the scientific and medical communities to interpret the human genome sequence and apply it to understand human biology and improve health. The ENCODE Consortium is integrating multiple technologies and approaches in a collective effort to discover and define the functional elements encoded in the human genome, including genes, transcripts, and transcriptional regulatory regions, together with their attendant chromatin states and DNA methylation patterns. In the process, standards to ensure high-quality data have been implemented, and novel algorithms have been developed to facilitate analysis. Data and derived results are made available through a freely accessible database. Here we provide an overview of the project and the resources it is generating and illustrate the application of ENCODE data to interpret the human genome.
Resumo:
The oxalate-carbonate pathway (OCP) leads to a potential carbon sink in terrestrial environments. This process is linked to the activity of oxalotrophic bacteria. Although isolation and molecular characterizations are used to study oxalotrophic bacteria, these approaches do not give information on the active oxalotrophs present in soil undergoing the OCP. The aim of this study was to assess the diversity of active oxalotrophic bacteria in soil microcosms using the Bromodeoxyuridine (BrdU) DNA labeling technique. Soil was collected near an oxalogenic tree (Milicia excelsa). Different concentrations of calcium oxalate (0.5%, 1%, and 4% w/w) were added to the soil microcosms and compared with an untreated control. After 12days of incubation, a maximal pH of 7.7 was measured for microcosms with oxalate (initial pH 6.4). At this time point, a DGGE profile of the frc gene was performed from BrdU-labeled soil DNA and unlabeled soil DNA. Actinobacteria (Streptomyces- and Kribbella-like sequences), Gammaproteobacteria and Betaproteobacteria were found as the main active oxalotrophic bacterial groups. This study highlights the relevance of Actinobacteria as members of the active bacterial community and the identification of novel uncultured oxalotrophic groups (i.e. Kribbella) active in soils.
Resumo:
Cancer is a major health issue that absorbs the attention of a large part of the biomedical research. Intercalating agents bind to DNA molecules and can inhibit their synthesis and transcription; thus, they are increasingly used as drugs to fight cancer. In this work, we show how atomic force microscopy in liquid can characterize, through time-lapse imaging, the dynamical influence of intercalating agents on the supercoiling of DNA, improving our understanding of the drug's effect.
Resumo:
Monitoring and management of intracranial pressure (ICP) and cerebral perfusion pressure (CPP) is a standard of care after traumatic brain injury (TBI). However, the pathophysiology of so-called secondary brain injury, i.e., the cascade of potentially deleterious events that occur in the early phase following initial cerebral insult-after TBI, is complex, involving a subtle interplay between cerebral blood flow (CBF), oxygen delivery and utilization, and supply of main cerebral energy substrates (glucose) to the injured brain. Regulation of this interplay depends on the type of injury and may vary individually and over time. In this setting, patient management can be a challenging task, where standard ICP/CPP monitoring may become insufficient to prevent secondary brain injury. Growing clinical evidence demonstrates that so-called multimodal brain monitoring, including brain tissue oxygen (PbtO2), cerebral microdialysis and transcranial Doppler among others, might help to optimize CBF and the delivery of oxygen/energy substrate at the bedside, thereby improving the management of secondary brain injury. Looking beyond ICP and CPP, and applying a multimodal therapeutic approach for the optimization of CBF, oxygen delivery, and brain energy supply may eventually improve overall care of patients with head injury. This review summarizes some of the important pathophysiological determinants of secondary cerebral damage after TBI and discusses novel approaches to optimize CBF and provide adequate oxygen and energy supply to the injured brain using multimodal brain monitoring.
Resumo:
Résumé:Background:La mutation 3243 de 1'ADN mitochondrial est associee avec le syndrome l\/HDD (surdite, diabète transmis par la mère) et le syndrome MELAS (Myopathie, Encéphalopathie, acidose Lactique et attaques cérébrales). Elle est aussi associe à des troubles cardiaques, digestifs, endo- et exocrines. Nous rapportons deux cas de maculopathie associée à cette mutation.Histoire et symptomes: pCas l: il s'agit d'une femme de 60 ans soufrant d'un diabète et d'une surdité sans plainte visuelle lors de la présentation. Son acuité visuelle était de 10/ l0 des deux yeux.Cas 2: il s'agit d'une femme de 54 ans souffrant d'une surdité et d'un diabète qui se plaint d'une baisse de vision principalement de l'oeil gauche. Son acuité visuelle était de 6/10 pour l'oeil droit et de 0.5/l0 pour l'oeil gauche.Les deux patientes présentaient une atrophie choriorétinienne aréolaire centrale. La patiente 1 a été suivie durant plus de 15 ans. Une évolution lente et progressive de la maculopathie a été observée. Lors de la dernière visite, l'acuité visuelle était de 6/ l0 dans les deux yeux. Elle présentait un handicap marqué des suites du scotome annulaire.Thérapie et pronostic:AucunConclusion:Les deux patientes présentaient une atrophie rétinienne annulaire périmaculaire. Les patients atteints d'une mutation 3243 de l'ADN mitochondrial devraient bénéficier d'un examen du fond d'oeil à la recherche d'une maculopahtie, même s'ils sont asymptomatiques.Inversement, la découverte d'une telle maculopathie géographique devrait suggérer la possibilité d'une mutation au locus 3243 de l'ADN mitochondrial, surtout en présence d'un diabète et/ou d'une surdité.
Resumo:
AbstractText BACKGROUND: Profiling sperm DNA present on vaginal swabs taken from rape victims often contributes to identifying and incarcerating rapists. Large amounts of the victim's epithelial cells contaminate the sperm present on swabs, however, and complicate this process. The standard method for obtaining relatively pure sperm DNA from a vaginal swab is to digest the epithelial cells with Proteinase K in order to solubilize the victim's DNA, and to then physically separate the soluble DNA from the intact sperm by pelleting the sperm, removing the victim's fraction, and repeatedly washing the sperm pellet. An alternative approach that does not require washing steps is to digest with Proteinase K, pellet the sperm, remove the victim's fraction, and then digest the residual victim's DNA with a nuclease. METHODS: The nuclease approach has been commercialized in a product, the Erase Sperm Isolation Kit (PTC Labs, Columbia, MO, USA), and five crime laboratories have tested it on semen-spiked female buccal swabs in a direct comparison with their standard methods. Comparisons have also been performed on timed post-coital vaginal swabs and evidence collected from sexual assault cases. RESULTS: For the semen-spiked buccal swabs, Erase outperformed the standard methods in all five laboratories and in most cases was able to provide a clean male profile from buccal swabs spiked with only 1,500 sperm. The vaginal swabs taken after consensual sex and the evidence collected from rape victims showed a similar pattern of Erase providing superior profiles. CONCLUSIONS: In all samples tested, STR profiles of the male DNA fractions obtained with Erase were as good as or better than those obtained using the standard methods.