992 resultados para DM
Resumo:
The dmrt (doublesex and mab-3 related transcription factor) gene family comprises several transcription factors that share a conserved DM domain. Dmrt1 is considered to be involved in sexual development, but the precise function of other family members is unclear. In this study, we isolated genomic DNA and cDNA sequences of dmrt4, a member of the dmrt gene family, from olive flounder, Paralichthys olivaceus, through genome walking and real-time reverse transcriptase (RT)-PCR. Sequence analysis indicated that its genomic DNA contains two exons and one intron. A transcriptional factor binding sites prediction program identified a sexual development-related protein, Sox9 (Sry-like HMG box containing 9) in its 5' promoter. Protein alignment and phylogenetic analysis suggested that flounder Dmrt4 is closely related to tilapia Dmo (DM domain gene in ovary). The expression of dmrt4 in adult flounder was sexually dimorphic, as shown by real-time RT-PCR analysis, with strong expression in the testis but very weak expression in the ovary. Its expression was also strong in the brain and gill, but there was only weak or no expression at all in some of the other tissues tested of both sexes. During embryogenesis, its expression was detected in most developmental stages, although the level of expression was distinctive of the various stages. Whole mount in situ hybridization revealed that the dmrt4 was expressed in the otic placodes, forebrain, telencephalon and olfactory placodes of embryos at different developmental stages. These results will improve our understanding of the possible role of flounder dmrt4 in the development of the gonads, nervous system and sense organs.
Resumo:
Twenty-seven Porphyra lines from 5 classes, including lines widely used in China, wild lines, and lines introduced to China from abroad in recent years, were screened by means of amplified fragment length polymorphism (AFLP) with 24 primer pairs. From the generated AFLP products, 13 bands that showed stable and repeatable AFLP patterns amplified by primer pairs M-CGA/E-AA and M-CGA/E-TA were scored and used to develop the DNA fingerprints of the 27 Porphyra lines. Moreover, the DNA fingerprinting patterns were converted into computer language expressed with digitals 1 and 0, which represented the presence (numbered as 1) or absence (numbered as 0) of the corresponding band. On the basis of these results, computerized AFLP DNA fingerprints were constructed in which each of the 27 Porphyra lines has its unique AFLP,fingerprinting pattern and can be easily distinguished from others. Software called PGI-AFLP (Porphyra germplasm identification-AFLP) was designed for identification of the 27 Porphyra lines. In addition, 21 specific AFLP markers from 15 Porphyra lines were identified; 6 AFLP markers from 4 Porphyra lines were sequenced, and 2 of them were successfully converted into SCAR (sequence characterized amplification region) markers. The developed AFLP DNA fingerprinting and specific molecular markers provide useful ways for the identification, classification, and resource protection of the Porphyra lines.
Resumo:
Twenty-seven Porphyra lines, including lines widely used in China, wild lines and lines introduced to China from abroad in recent years, were screened by random amplified polymorphic DNA (RAPD) technique with 120 operon primers. From the generated RAPD products, 11 bands that showed stable and repeatable RAPD patterns amplified by OPC-04, OPJ-18 and OPX-06, respectively were scored and used to develop the DNA fingerprints of the 27 Porphyra lines. Moreover, the DNA fingerprinting patterns were converted into computer language expressed with two digitals, 1 and 0, which represented the presence (numbered as 1) or absence (numbered as 0) of the corresponding band, respectively. Based on the above results, computerized DNA fingerprints were constructed in which each of the 27 Porphyra lines has its unique fingerprinting pattern and can be easily distinguished from others. Software named PGI (Porphyra germplasm identification) was designed for identification of the 27 Porphyra lines. In addition, seven specific RAPD markers from seven Porphyra lines were identified and two of them were successfully converted into SCAR (sequence characterized amplification region) markers. The developed DNA fingerprinting and specific molecular markers provide useful ways for the identification, classification and resource protection of the Porphyra lines.
Resumo:
A Chlamydomonas reinhardtii (C. reinhardtii) chloroplast expression vector, papc-B, containing the apc-B gene that encodes the beta subunit of the light-harvesting antenna protein allophycocyanin (APC) of cyanobacteria, was constructed and transferred to the chloroplast genome of C. reinhardtii by the biolistic method. The transformants were identified by Southern blot, Western blot and ELISA assays after selection on resistant medium. The recombinant APC beta subunit was expressed in the C. reinhardtii chloroplast and accounted for up to 2-3% (w/w) of the total soluble protein (TSP), suggesting a promising prospect of using C. reinhardtii chloroplasts to produce functional plant-derived proteins.
Resumo:
Thermal analysis and thermolysis kinetics of three kinds of seaweeds and fir wood (M. glyptostriboides Huet Cheng), a kind of typical land plant, had been conducted. The results showed that thermal stability follows the order of Grateloupia filicina < Ulva lactuca < Dictyopteris divaricata < fir wood. A notable difference on heat flow between seaweeds and fir wood during thermolysis was that the former were mainly connected with exothermic processes at relatively lower temperature regimes. while the latter was connected with an apparent endotherm at a relatively higher temperature regime followed by a maximum exothermic peak. This suggested that the heat coupling might be realized if co-thermolysis of seaweeds and fir wood were carried out. The main devolatilization phase of each seaweed could be described by Avrami-Erofeev equation, which indicated that thermolysis of seaweeds follows the mechanism of random nucleation and nuclei growth, whereas that of fir wood by Z-L-T equation and its thermolysis mechanism was three-dimensional diffusion. The activation energies calculated for both seaweeds and fir wood increase as conversion increases. However, those for the former have wider distribution. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Molecular markers were used to identify and assess cultivars of Laminaria Lamx. and to delineate their phylogenetic relationships. Random amplified polymorphic DNA (RAPD) analysis was used for detection. After screening, 11 primers were selected and they yielded 133 bands in all, of which approximately 99.2% were polymorphic. The genetic distances between gametophytes ranged from 0.412 to 0.956. Two clusters were formed with the unweighted pair group method with arithmetic mean (UPGMA) dendrogram based on the simple matching coefficient. All cultivars of Laminaria japonica Aresch. used for breeding in China fell into one cluster. L. japonica from Japan, L. saccharina (L.) Lam., and L. angustata Kjellm. formed the other cluster and showed higher genetic variation than L. japonica from China. Nuclear ribosomal DNA (rDNA) sequences, including internal transcribed spacers (ITS1 and ITS2) were studied and aligned. The nucleotides of the sequences ranged from 634 to 668, with a total of 692 positions including TTS1, ITS2, and the 5.8S coding region. The phylogenetic tree obtained by the neighbor-joining method favored, to some extent, the results revealed by RAPD analysis. The present study indicates that RAPD and ITS analyses could be used to identify and assess Laminaria germplasm and to distinguish some species and, even intraspecies, in Laminaria.
3 METHODS FOR ESTIMATING TURBULENT STRESS AND DRAG COEFFICIENT IN TIDAL CURRENTS OF THE HANGZHOU BAY
Resumo:
海带根是一种治疗糖尿病的民间中药,在沿海地区有很长的民间用药历史。食用海带根能够有效降低糖尿病患者的血糖,起到治疗作用。本文目的在于发现海带根中抗糖尿病的天然活性物质并分析它们在糖尿病治疗中的靶点;进一步开发一种低价且无毒副作用的化学类新药或中药新药。 α-glucosidase和 PTP-1B是II型糖尿病的两个重要靶点,海带根提取物能同时作用于这两个靶点。通过抑制这两种酶,降低血糖水平,85%乙醇粗提物对两种酶的IC50分别为1589ug/ml、IC50 1271ug/ml。乙酸乙酯相和石油醚相分别抑制α-glucosidase和 PTP-1B,IC50分别为380ug/ml和220ug/ml。因此以α-glucosidase和 PTP-1B的抑制活性为导向,用天然产物化学的方法对活性成分进行追踪分离,寻找单体活性物质进而鉴定其结构。由于乙酸乙酯相具有α-glucosidase抑制活性,用硅胶柱层析(石油醚:丙酮5:1、1:1),(二氯甲烷:甲醇60:1、20:1、5:1),凝胶柱层析Sephadex LH20(二氯甲烷:甲醇1:1),HPLC (80% 甲醇-水),对α-glucosidase抑制剂进行分离,得到组分IC50 为3.6ug/ml。用质谱仪和核磁共振确定结构。 生物活性测定结果表明α-glucosidase和 PTP-1B是两种不同的物质,分别位于乙酸乙酯相和石油醚相。光照实验和高温实验表明抑制α-glucosidase的活性成分对光照和温度敏感。光照48h或者50℃ 12h而且对α-glucosidase的抑制活性显著降低,TLC检测并用FeCl3显色初步表明抑制α-glucosidase的活性成分可能是多数酚类物质。动物实验显示在1450ug/kg剂量下,乙酸乙酯相能够显著降低糖尿病小鼠血糖,与阴性对照组差异极显著(P<0.01)。表明,海带根提取物在体内和体外均呈现出抗糖尿病活性,是一种潜在的抗糖尿病药物。
Resumo:
海藻是海洋生物中的一大类群,由于其特殊的生活环境,能够代谢产生大量结构独特多变和活性特殊多样的代谢产物,是化学和生物活性多样性研究的重要对象之一。我国海域辽阔,海藻资源丰富,为寻找结构新颖、生理活性独特的先导化合物,加强对海藻资源的开发利用,本论文对中国沿海的三种海洋红藻进行了化学成分和生物活性研究,同时对山东青岛海域生物量丰富的一种海洋红藻松节藻进行了动物体内抗糖尿病活性研究。 利用正相硅胶柱色谱、Sephadex LH-20柱色谱以及反相HPLC和重结晶等现代分离手段,对山东青岛沿海的红藻扇形叉枝藻(Gymnogongrus flabelliformis)进行了系统的化学成分研究,从中得到单体化合物26个,通过波谱学方法(IR、MS、NMR等)鉴定了他们的结构,分别为(3R,6R,7E)-(+)-3-O-phenylacetyl- 4,7-megastigmadiene-9-one(1),(3R,7E)-(-)-3-O-phenylacetyl-5,7-megastigmadiene -9-one(2),(3S,6R,7E)-(+)-3-hydroxyl-4,7-megastigmadien-9-one(3),(3S,5R,6S,7E)- (-)-3-hydroxy-5,6-epoxy-7-megastigmene-9-one(4),(3S,5S,6R,7E)-(+)-3-hydroxy- 5,6-epoxy-7-megastigmene-9-one(5),Dehydrovomifoliol(6),(3R)-(-)-4-[(2R,4S)-4- acetoxy-2-hydroxy-2,6,6-trimethylcyclohexylidene]-3-buten-2-one(7),2,3,3′-三溴-4,4′,5,5′-四羟基-1′-乙氧甲基双苯基甲烷(8),2,2′,3,3′-四溴-4,4′,5,5′-四羟基双苯基甲烷(9),3-溴-4,5-二羟基苯甲醛(10),2,3-二溴-4,5-二羟基苯甲基甲醚(11),2,3-二溴-4,5-二羟基苯甲醇(12),N, N-二甲基酪胺(13),4-羟基苯甲酸乙酯(14),4-羟基苯甲基乙醚(15),4-羟基苯乙基乙酯(16),4-羟基苯乙酸甲酯(17),4-羟基苯甲醛(18),豆甾-4-烯-3-酮(19),胆甾-4-烯-3-酮(20),胆甾醇(21),尿嘧啶(22),尿嘧啶核苷(23),腺嘌呤核苷(24),丁二酸(25),5-羟基-4-甲基-5-戊基-2,5-二氢呋喃-2-酮(26)。其中化合物1、2为新化合物,化合物3为新天然产物,所有化合物均为首次从该属海藻中分离得到。通过 MTT 法对部分单体化合物进行了肿瘤细胞毒活性筛选, 结果表明,化合物8、9、10、12对筛选的所有细胞株均有较强细胞毒活性,化合物11对人肺癌细胞株(A549)、人肝癌细胞株(Bel 7402)、人结肠癌细胞株(HCT-8)有一定细胞毒活性。通过研究单体化合物对小鼠腹腔巨噬细胞TNF-分泌的影响,对其进行抗炎活性筛选,结果表明,化合物8、9、11、13、17、23、24、25对小鼠腹腔巨噬细胞TNF-分泌表现出明显的抑制作用。 从采自山东荣成镆铘岛的红藻小珊瑚藻(Corallina pilulifera)的乙酸乙酯萃取物中分离得到16个单体化合物,通过波谱学方法鉴定化合物结构14个(另外2个正在鉴定中),分别为2α-乙氧酰基-2β-羟基-A-降胆甾-5-烯-4-酮(27),胆甾-4-烯-3-酮(28),胆甾醇(29),3β-羟基-胆甾-5,24(28)-二烯-7-酮(30),2α-羟基-胆甾-4-烯-3-酮(31),6α-羟基-胆甾-4-烯-3-酮(32),3β-羟基-胆甾-5-烯-7-酮(33),(E)-phytol epoxide(34),Phytenal(35),3,7,11,15- tetramethyl-hexadec-2-en-1-oll(Phytol)(36),Loloilide(37),(3S,5R,6S,7E)-(-)-3-hydroxy-5,6-epoxy-7- megastigmene-9-one(38),Dehydrovomifoliol(39),4-羟基苯甲醛(40)。其中,化合物 31为新天然产物,化合物27为首次从植物中分离得到,所有化合物均为首次从该种海藻中分离得到。通过 MTT 法对分离得到的单体化合物进行了肿瘤细胞毒活性筛选,化合物27和化合物32对筛选的所有肿瘤细胞株均有细胞毒活性,且化合物27对人胃癌细胞株(BGC-823)、人结肠癌细胞株(HCT-8)和人卵巢癌细胞株(A2780)具有中等强度抑制活性。化合物28、化合物31和化合物33对人肝癌细胞株(Bel 7402)、人结肠癌细胞株(HCT-8)和人卵巢癌细胞株(A2780)有一定细胞毒活性。 从采自广西北海涠洲岛的多管藻Polysiphonia sp.的乙酸乙酯萃取物中分离得到6个单体化合物,通过波谱学方法鉴定化合物结构5个(另外1个仍在鉴定),分别为胆甾醇(41),3,7,11,15-tetramethyl-hexadec-2-en-1-ol(Phytol)(42),3-吲哚甲醛(43),4-羟基苯甲醛(44),4-羟基苯甲酸(45)。 对山东青岛沿海的松节藻 (Rhodomela confervoides) 乙醇提取物进行了初步的体内抗糖尿病活性研究,采用链脲佐菌素诱导的2型糖尿病(STZ-DM)大鼠模型对其进行体内降糖实验,结果发现,松节藻乙醇提取物在糖尿病大鼠体内不仅具有显著的降血糖作用,且呈现良好的量–效关系,而且能够纠正糖尿病引发的物质代谢紊乱,增加体重,提高试验动物的成活率,因此具有良好的应用开发前景。