881 resultados para DISGUST SENSITIVITY
Resumo:
Organisms in all domains, Archaea, Bacteria, and Eukarya will respond to climate change with differential vulnerabilities resulting in shifts in species distribution, coexistence, and interactions. The identification of unifying principles of organism functioning across all domains would facilitate a cause and effect understanding of such changes and their implications for ecosystem shifts. For example, the functional specialization of all organisms in limited temperature ranges leads us to ask for unifying functional reasons. Organisms also specialize in either anoxic or various oxygen ranges, with animals and plants depending on high oxygen levels. Here, we identify thermal ranges, heat limits of growth, and critically low (hypoxic) oxygen concentrations as proxies of tolerance in a meta-analysis of data available for marine organisms, with special reference to domain-specific limits. For an explanation of the patterns and differences observed, we define and quantify a proxy for organismic complexity across species from all domains. Rising complexity causes heat (and hypoxia) tolerances to decrease from Archaea to Bacteria to uni- and then multicellular Eukarya. Within and across domains, taxon-specific tolerance limits likely reflect ultimate evolutionary limits of its species to acclimatization and adaptation. We hypothesize that rising taxon-specific complexities in structure and function constrain organisms to narrower environmental ranges. Low complexity as in Archaea and some Bacteria provide life options in extreme environments. In the warmest oceans, temperature maxima reach and will surpass the permanent limits to the existence of multicellular animals, plants and unicellular phytoplankter. Smaller, less complex unicellular Eukarya, Bacteria, and Archaea will thus benefit and predominate even more in a future, warmer, and hypoxic ocean.
Resumo:
The Arctic Ocean is a bellwether for ocean acidification, yet few direct Arctic studies have been carried out and limited observations exist, especially in winter. We present unique under-ice physicochemical data showing the persistence of a mid water column area of high CO2 and low pH through late winter, Zooplankton data demonstrating that the dominant copepod species are distributed across these different physicochemical conditions, and empirical data demonstrating that these copepods show sensitivity to pCO2 that parallels the range of natural pCO2 they experience through their daily vertical migration behavior. Our data, collected as part of the Catlin Arctic Survey, provide unique insight into the link between environmental variability, behavior, and an organism's physiological tolerance to CO2 in key Arctic biota.
Resumo:
This study investigated the impact of photon flux and elevated CO2 concentrations on growth and photosynthetic electron transport on the marine diatom Chaetoceros muelleri and looked for evidence for the presence of a CO2-concentrating mechanism (CCM). pH drift experiments clearly showed that C. muelleri has the capacity to use bicarbonate to acquire inorganic carbon through one or multiple CCMs. The final pH achieved in unbuffered cultures was not changed by light intensity, even under very low photon flux, implying a low energy demand of bicarbonate use via a CCM. In short-term pH drift experiments, only treatment with the carbonic anhydrase inhibitor ethoxyzolamide (EZ) slowed down the rise in pH considerably. EZ was also the only inhibitor that altered the final pH attained, although marginally. In growth experiments, CO2 availability was manipulated by changing the pH in closed flasks at a fixed dissolved inorganic carbon (DIC) concentration. Low-light-treated samples showed lower growth rates in elevated CO2conditions. No CO2 effect was recorded under high light exposure. The maximal photosynthetic capacity, however, increased with CO2 concentration in saturating, but not in subsaturating, light intensities. Growth and photosynthetic capacity therefore responded in opposite ways to increasing CO2 availability. The capacity to photoacclimate to high and low photon flux appeared not to be affected by CO2treatments. However, photoacclimation was restricted to growth photon fluxes between 30 and 300 µmol photons m-2 s-1. The light saturation points for photosynthetic electron transport and for growth coincided at 100 µmol photons m-2 s-1. Below 100 µmol photons m-2 s-1 the light saturation point for photosynthesis was higher than the growth photon flux (i.e. photosynthesis was not light saturated under growth conditions), whereas at higher growth photon flux, photosynthesis was saturated below growth light levels.
Resumo:
We used a controlled CO2 perturbation experiment to test hypotheses about changes in diversity, composition and structure of soft-bottom intertidal macrobenthic assemblages, under realistic and locally relevant scenarios of seawater acidification. Patches of undisturbed sediment were collected from 2 types of intertidal sedimentary habitat in the Ria Formosa coastal lagoon (South Portugal) and exposed to 2 levels of seawater acidification (pH reduced by 0.3 and 0.6 units) and 1 unmanipulated (control) level. After 75 d the assemblages differed significantly between the 2 types of sediment and between field controls and the ex situ treatments, but not among the 3 pH levels tested. The naturally high values of total alkalinity buffered seawater from the changes imposed on carbonate chemistry and may have contributed to offsetting acidification at the local scale. Observed differences on biota were strongly related to the organic matter content and grain-size of the sediments, particularly to the fractions of medium and coarse sand. Soft-bottom intertidal macrofauna was significantly affected by the stress of being held in an artificial environment, but not by CO2-induced seawater acidification. Given the previously observed variations in the sensitivities of marine organisms to seawater acidification, direct extrapolations of the present findings to different regions or other types of assemblages do not seem advisable. However, the contribution of ex situ studies to the assessment of ecosystem-level responses to environmental disturbances could generally be improved by incorporating adequate field controls in the experimental design.
Resumo:
Experimental assessments of species vulnerabilities to ocean acidification are rapidly increasing in number, yet the potential for short- and long-term adaptation to high CO2 by contemporary marine organisms remains poorly understood. We used a novel experimental approach that combined bi-weekly sampling of a wild, spawning fish population (Atlantic silverside Menidia menidia) with standardized offspring CO2 exposure experiments and parallel pH monitoring of a coastal ecosystem. We assessed whether offspring produced at different times of the spawning season (April to July) would be similarly susceptible to elevated (1100 µatm, pHNIST = 7.77) and high CO2 levels (2300 µatm, pHNIST = 7.47). Early in the season (April), high CO2 levels significantly (p < 0.05) reduced fish survival by 54% (2012) and 33% (2013) and reduced 1 to 10 d post-hatch growth by 17% relative to ambient conditions. However, offspring from parents collected later in the season became increasingly CO2-tolerant until, by mid-May, offspring survival was equally high at all CO2 levels. This interannually consistent plasticity coincided with the rapid annual pH decline in the species' spawning habitat (mean pH: 1 April/31 May = 8.05/7.67). It suggests that parents can condition their offspring to seasonally acidifying environments, either via changes in maternal provisioning and/or epigenetic transgenerational plasticity (TGP). TGP to increasing CO2 has been shown in the laboratory but never before in a wild population. Our novel findings of direct CO2-related survival reductions in wild fish offspring and seasonally plastic responses imply that realistic assessments of species CO2-sensitivities must control for parental environments that are seasonally variable in coastal habitats.
Resumo:
Increasing atmospheric CO2 concentrations are expected to impact pelagic ecosystem functioning in the near future by driving ocean warming and acidification. While numerous studies have investigated impacts of rising temperature and seawater acidification on planktonic organisms separately, little is presently known on their combined effects. To test for possible synergistic effects we exposed two coccolithophore species, Emiliania huxleyi and Gephyrocapsa oceanica, to a CO2 gradient ranging from ~0.5-250 µmol/kg (i.e. ~20-6000 µatm pCO2) at three different temperatures (i.e. 10, 15, 20°C for E. huxleyi and 15, 20, 25°C for G. oceanica). Both species showed CO2-dependent optimum-curve responses for growth, photosynthesis and calcification rates at all temperatures. Increased temperature generally enhanced growth and production rates and modified sensitivities of metabolic processes to increasing CO2. CO2 optimum concentrations for growth, calcification, and organic carbon fixation rates were only marginally influenced from low to intermediate temperatures. However, there was a clear optimum shift towards higher CO2 concentrations from intermediate to high temperatures in both species. Our results demonstrate that the CO2 concentration where optimum growth, calcification and carbon fixation rates occur is modulated by temperature. Thus, the response of a coccolithophore strain to ocean acidification at a given temperature can be negative, neutral or positive depending on that strain's temperature optimum. This emphasizes that the cellular responses of coccolithophores to ocean acidification can only be judged accurately when interpreted in the proper eco-physiological context of a given strain or species. Addressing the synergistic effects of changing carbonate chemistry and temperature is an essential step when assessing the success of coccolithophores in the future ocean.
Resumo:
Several abrupt climatic events during the present interglacial have been associated with catastrophic freshwater forcing, such as the events at 9.2and 8.2 ka BP (Alley et al., 1997; Barber et al., 1999; Marshall et al. 2007; Fleitmann et al. 2008). Proxy evidence suggests that similar events may have occurred during the last interglacial (e.g., Beets & Beets 2003; Beets et al., 2006), suggesting that freshwater-induced perturbations are an important mechanism for abrupt climate change in interglacial climates. In addition solar variability (Neff et al., 2001; Wang et al., 2005) and explosive volcanic eruptions (Crowley, 2000; Shindell et al., 2003; Jansen et al., 2007) can trigger centennial-scale climate events during interglacials and may thus have been responsible for a part of interglacial climate variability. We investigate the sensitivity of the present and last interglacial climates to realistic perturbations resulting from freshwater, solar or volcanic forcings. We will compare the differences between the two interglacial periods, between different climate models and evaluate the resulting using proxy archives.
Resumo:
Ozone (O3) phytototoxicity has been reported on a wide range of plantspecies, inducing the appearance of specific foliar injury or increasing leaf senescence. No information regarding the sensitivity of plantspecies from dehesa Mediterranean grasslands has been provided in spite of their great biological diversity. A screening study was carried out in open-top chambers (OTCs) to assess the O3-sensitivity of 22 representative therophytes of these ecosystems based on the appearance and extent of foliar injury. A distinction was made between specific O3injury and non-specific discolorations. Three O3 treatments (charcoal-filtered air, non-filtered air and non-filtered air supplemented with 40 nl l−1 O3 during 5 days per week) and three OTCs per treatment were used. The Papilionaceae species were more sensitive to O3 than the Poaceae species involved in the experiment since ambient levels induced foliar symptoms in 67% and 27%, respectively, of both plant families. An O3-sensitivity ranking of the species involved in the assessment is provided, which could be useful for bioindication programmes in Mediterranean areas. The assessed Trifoliumspecies were particularly sensitive since foliar symptoms were apparent in association with O3 accumulated exposures well below the current critical level for the prevention of this kind of effect. The exposure indices involving lower cut-off values (i.e. 30 nl l−1) were best related with the extent of O3-induced injury on these species.