947 resultados para DISEASE PROGRESSION
Resumo:
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the United Statesand Europe. CLL patients with deletion of chromosome 17p, where the tumor suppressor p53 gene is located, often develop a more aggressive disease with poor clinical outcomes. However, the underlying mechanism remains unclear. In order to understand the underneath mechanism in vivo, I have recently generated mice with Eu-TCL1-Tg:p53-/- genotype and showed that these mice develop aggressive leukemia that resembles human CLL with 17p deletion. The Eu-TCL1-Tg:p53-/- mice developed CLL disease at 3-4 months, significantly earlier than the parental Eu-TCL1-Tg mice that developed CLL disease at 8-12 months. Flow cytometry analysis showed that the CD5+/ IgM+ cell population appeared in the peritoneal cavity, bone marrow, and the spleens of Eu-TCL1-Tg:p53-/- mice significantly earlier than that of the parental Eu-TCL1-Tg mice. Massive infiltration and accumulation of leukemia cells were found in the spleen and peritoneal cavity. In vitro study showed that the leukemia cells isolated from the Eu-TCL1-Tg:p53-/- mice were more resistant to fludarabine treatment than the leukemia cells isolated from spleens of Eu-TCL1-Tg mice. Interestingly, TUNEL assay revealed that there was higher apoptotic cell death found in the Eu-TCL1-Tg spleen tissue compared to the spleens of the Eu-TCL1-Tg:p53-/- mice, suggesting that the loss of p53 compromises the apoptotic process in vivo, and this might in part explain the drug resistant phenotype of CLL cells with 17p-deletion. In the present study, we further demonstrated that the p53 deficiency in the TCL1 transgenic mice resulted in significant down-regulation of microRNAs miR-15a and miR16-1, associated with a substantial up-regulation of Mcl-1, suggesting that the p53-miR15a/16-Mcl-1 axis may play an important role in CLL pathogenesis. Interestingly, we also found that loss of p53 resulted in a significant decrease in expression of the miR-30 family especially miR-30d in leukemia lymphocytes from the Eu-TCL1-Tg:p53-/- mice. Such down-regulation of those microRNAs and up-regulation of Mcl-1 were also found in primary leukemia cells from CLL patients with 17p deletion. To further exam the biological significance of decrease in the miR-30 family in CLL, we investigated the potential involvement of EZH2 (enhancer of zeste homolog 2), a component of the Polycomb repressive complex known to be a downstream target of miR-30d and plays a role in disease progression in several solid cancers. RT-PCR and western blot analyses showed that both EZH2 mRNA transcript and protein levels were significantly increased in the lymphocytes of Eu-TCL1-Tg:p53-/- mice relative to Eu-TCL1-Tg mice. Exposure of leukemia cells isolated from Eu-TCL1-Tg:p53-/- mice to the EZH2 inhibitor 3-deazaneplanocin (DZNep) led to induction of apoptosis, suggesting EZH2 may play a role in promoting CLL cell survival and this may contribute to the aggressive phenotype of CLL with loss of p53. Our study has created a novel CLL mouse model, and suggests that the p53/miR15a/16-Mcl-1 axis & p53/miR30d-EZH2 may contribute to the aggressive phenotype and drug resistance in CLL cells with loss of p53.
Resumo:
In melanoma patient specimens and cell lines, the over expression of galectin-3 is associated with disease progression and metastatic potential. Herein, we have sought out to determine whether galectin-3 affects the malignant melanoma phenotype by regulating downstream target genes. To that end, galectin-3 was stably silenced by utilizing the lentivirus-incorporated small hairpin RNA in two metastatic melanoma cell lines, WM2664 and A375SM, and subjected to gene expression microarray analysis. We identified and validated the lysophospholipase D enzyme, autotaxin, a promoter of migration, invasion, and tumorigenesis, to be down regulated after silencing galectin-3. Silencing galectin-3 significantly reduced the promoter activity of autotaxin. Interestingly, we also found the transcription factor NFAT1 to have reduced protein expression after silencing galectin-3. Electrophoretic mobility shift assays from previous reports have shown that NFAT1 binds to the autotaxin promoter in two locations. ChIP analysis was performed, and we observed a complete loss of bound NFAT1 to the autotaxin promoter after silencing galectin-3 in melanoma cells. Mutation of the NFAT1 binding sites at either location reduces autotaxin promoter activity. Silencing NFAT1 reduces autotaxin expression while over expressing NFAT1 in NFAT1 negative SB-2 melanoma cells induces autotaxin expression. These data suggest that galectin-3 silencing reduces autotaxin transcription by reducing the amount of NFAT1 protein expression. Rescue of galectin-3 rescues both NFAT1 and autotaxin. We also show that the re-expression of autotaxin in galectin-3 shRNA melanoma cells rescues the angiogenic phenotype in vivo. Furthermore, we identify NFAT1 as a potent inducer of tumor growth and experimental lung metastasis. Our data elucidate a previously unidentified mechanism by which galectin-3 regulates autotaxin and assign a novel role for NFAT1 during melanoma progression.
Resumo:
Background: The follow-up care for women with breast cancer requires an understanding of disease recurrence patterns and the follow-up visit schedule should be determined according to the times when the recurrence are most likely to occur, so that preventive measure can be taken to avoid or minimize the recurrence. Objective: To model breast cancer recurrence through stochastic process with an aim to generate a hazard function for determining a follow-up schedule. Methods: We modeled the process of disease progression as the time transformed Weiner process and the first-hitting-time was used as an approximation of the true failure time. The women's "recurrence-free survival time" or a "not having the recurrence event" is modeled by the time it takes Weiner process to cross a threshold value which represents a woman experiences breast cancer recurrence event. We explored threshold regression model which takes account of covariates that contributed to the prognosis of breast cancer following development of the first-hitting time model. Using real data from SEER-Medicare, we proposed models of follow-up visits schedule on the basis of constant probability of disease recurrence between consecutive visits. Results: We demonstrated that the threshold regression based on first-hitting-time modeling approach can provide useful predictive information about breast cancer recurrence. Our results suggest the surveillance and follow-up schedule can be determined for women based on their prognostic factors such as tumor stage and others. Women with early stage of disease may be seen less frequently for follow-up visits than those women with locally advanced stages. Our results from SEER-Medicare data support the idea of risk-controlled follow-up strategies for groups of women. Conclusion: The methodology we proposed in this study allows one to determine individual follow-up scheduling based on a parametric hazard function that incorporates known prognostic factors.^
Resumo:
Wilms tumor is a childhood tumor of the kidney arising from the undifferentiated metanephric mesenchyme. Tumorigenesis is attributed to a number of genetic and epigenetic alterations. In 20% of Wilms tumors, Wilms tumor gene 1 (WT1) undergoes inactivating homozygous mutations causing loss of function of the zinc finger transcription factor it encodes. It is hypothesized that mutations in WT1 result in dysregulation of downstream target genes, leading to aberrant kidney development and/or Wilms tumor. These downstream target genes are largely unknown, and identification is important for further understanding Wilms tumor development. Heatmap data of human Wilms tumor protein expression, generated by reverse phase protein assay analysis (RPPA), show significant correlation between WT1 mutation status and low PRKCα expression (p= 0.00013); additionally, p-PRKCα (S657) also shows decreased expression in these samples (p= 0.00373). These data suggest that the WT1 transcription factor regulates PRKCα expression, and that PRKCα plays a potential role in Wilms tumor tumorigenesis. We hypothesize that the WT1 transcription factor directly/indirectly regulates PRKCα and mutations occurring in WT1 lead to decreased expression of PRKCα. Prkcα and Wt1 have been shown to co-localize in E14.5 mesenchymal cells of the developing kidney. siRNA knockdown, in-vivo ablation, and tet-inducible expression of Wt1 each independently confirm regulation of Prkcα expression by Wt1 at both RNA and protein levels, and investigation into possible WT1 binding sites in PRKCα regulatory regions has identified multiple sites to be confirmed by luciferase reporter constructs. With the goal of identifying WT1 and PRKCα downstream targets, RPPA analysis of protein expression in mesenchymal cell culture, following lentiviral delivered shRNA knockdown of Wt1 and shRNA knockdown of Prkcα, will be carried out. Apart from Wilms tumor, WT1 also plays an important role in Acute Myeloid Leukemia (AML). WT1 mutation status has been implicated, controversially, as an independent poor-prognosis factor in leukemia, leading to decreased probability of overall survival, complete remission, and disease free survival. RPPA analysis of AML patient samples showed significant decreases in PRKCα/p-PRKCα protein expression in a subset of patients (Kornblau, personal communication); therefore, the possible role of WT1 and PRKCα in leukemia disease progression is an additional focus of this study. WT1 mutation analysis of diploid leukemia patient samples revealed two patients with mutations predicted to affect WT1 activity; of these two samples, only one corresponded to the low PRKCα expression cohort. Further characterization of the role of WT1 in AML, and further understanding of WT1 regulated PRKCα expression, will be gained following RPPA analysis of protein expression in HL60 leukemia cell lines with lentiviral delivered shRNA knockdown of WT1 and shRNA knockdown of PRKCα.
Resumo:
Amyotrophic Lateral Sclerosis is a severe disease, which dramatically reduces the speech communication skills of patients as disease progresses. The present study is devoted to define accurate and objective estimates to characterize the loss of communication skills, to help clinicians and therapists in monitoring disease progression and in deciding on rehabilitation interventions. The methodology proposed is based on the perceptual (neuromorphic)definition of speech dinamics, concentrated in vowel sound in character and duration. We present the results from a longitudinal study carried out in an ALS patient during one year. Discussion addresses future actions.
Resumo:
Evolution of HIV-1 env sequences was studied in 15 seroconverting injection drug users selected for differences in the extent of CD4 T cell decline. The rates of increase of either sequence diversity at a given visit or divergence from the first seropositive visit were both higher in progressors than in nonprogressors. Viral evolution in individuals with rapid or moderate disease progression showed selection favoring nonsynonymous mutations, while nonprogressors with low viral loads selected against the nonsynonymous mutations that might have resulted in viruses with higher levels of replication. For 10 of the 15 subjects no single variant predominated over time. Evolution away from a dominant variant was followed frequently at a later time point by return to dominance of strains closely related to that variant. The observed evolutionary pattern is consistent with either selection against only the predominant virus or independent evolution occurring in different environments within the host. Differences in the level to which CD4 T cells fall in a given time period reflect not only quantitative differences in accumulation of mutations, but differences in the types of mutations that provide the best adaptation to the host environment.
Resumo:
We use mathematical models to study the relationship between HIV and the immune system during the natural course of infection and in the context of different antiviral treatment regimes. The models suggest that an efficient cytotoxic T lymphocyte (CTL) memory response is required to control the virus. We define CTL memory as long-term persistence of CTL precursors in the absence of antigen. Infection and depletion of CD4+ T helper cells interfere with CTL memory generation, resulting in persistent viral replication and disease progression. We find that antiviral drug therapy during primary infection can enable the development of CTL memory. In chronically infected patients, specific treatment schedules, either including deliberate drug holidays or antigenic boosts of the immune system, can lead to a re-establishment of CTL memory. Whether such treatment regimes would lead to long-term immunologic control deserves investigation under carefully controlled conditions.
Resumo:
Rearrangement of chromosomal bands 1q21–23 is one of the most frequent chromosomal aberrations observed in hematological malignancy. The genes affected by these rearrangements remain poorly characterized. Typically, 1q21–23 rearrangements arise during tumor evolution and accompany disease-specific chromosomal rearrangements such as t(14;18) (BCL2) and t(8;14) (MYC), where they are thus thought to play an important role in tumor progression. The pathogenetic basis of this 1q21–23-associated disease progression is currently unknown. In this setting, we surveyed our series of follicular lymphoma for evidence of recurring 1q21–23 breaks and identified three cases in which a t(14;18)(q32;q21) was accompanied by a novel balanced t(1;22)(q22;q11). Molecular cloning of the t(1;22) in a cell line (B593) derived from one of these cases and detailed fluorescent in situ hybridization mapping in the two remaining cases identified the FCGR2B gene, which encodes the immunoreceptor tyrosine-based inhibition motif-bearing IgG Fc receptor, FcγRIIB, as the target gene of the t(1;22)(q22;q11). We demonstrate deregulation of FCGR2B leading to hyperexpression of FcγRIIb2 as the principal consequence of the t(1;22). This is evidence that IgG Fc receptors can be targets for deregulation through chromosomal translocation in lymphoma. It suggests that dysregulation of FCGR2B may play a role in tumor progression in follicular lymphoma.
Resumo:
CD26 is a leukocyte-activation antigen that is expressed on T lymphocytes and macrophages and possesses dipeptidyl peptidase IV (DPPIV) activity, whose natural substrates have not been identified yet. CXC chemokines, stromal cell-derived factor 1α (SDF-1α) and 1β (SDF-1β), sharing the receptor CXCR-4, are highly efficacious chemoattractants for resting lymphocytes and CD34+ progenitor cells, and they efficiently block the CXCR-4-mediated entry into cells of T cell line tropic strains of HIV type 1 (HIV-1). Here we show that both the chemotactic and antiviral activities of these chemokines are abrogated by DPPIV-mediated specific removal of the N-terminal dipeptide, not only when the chemokines are produced in transformed mouse L cell line to express human CD26 but also when they were exposed to a human T cell line (H9) physiologically expressing CD26. Mutagenesis of SDF-1α confirmed the critical requirement of the N-terminal dipeptide for its chemotactic and antiviral activities. These data suggest that CD26-mediated cleavage of SDF-1α and SDF-1β likely occurs in human bodies and promotes HIV-1 replication and disease progression. They may also explain why memory function of CD4+ cells is preferentially lost in HIV-1 infection. Furthermore, CD26 would modulate various other biological processes in which SDF-1α and SDF-1β are involved.
Resumo:
Expression of CC chemokine receptor 5 (CCR5), the major coreceptor for HIV-1 cell entry, and its ligands (e.g., RANTES and MIP-1α) is widely regarded as central to the pathogenesis of HIV-1 infection. By surveying nearly 3,000 HIV+ and HIV− individuals from worldwide populations for polymorphisms in the genes encoding RANTES, MIP-1α, and CCR5, we show that the evolutionary histories of human populations have had a significant impact on the distribution of variation in these genes, and that this may be responsible, in part, for the heterogeneous nature of the epidemiology of the HIV-1 pandemic. The varied distribution of RANTES haplotypes (AC, GC, and AG) associated with population-specific HIV-1 transmission- and disease-modifying effects is a striking example. Homozygosity for the AC haplotype was associated with an increased risk of acquiring HIV-1 as well as accelerated disease progression in European Americans, but not in African Americans. Yet, the prevalence of the ancestral AC haplotype is high in individuals of African origin, but substantially lower in non-Africans. In a Japanese cohort, AG-containing RANTES haplotype pairs were associated with a delay in disease progression; however, we now show that their contribution to HIV-1 pathogenesis and epidemiology in other parts of the world is negligible because the AG haplotype is infrequent in non-Far East Asians. Thus, the varied distribution of RANTES, MIP-1α, and CCR5 haplotype pairs and their population-specific phenotypic effects on HIV-1 susceptibility and disease progression results in a complex pattern of biological determinants of HIV-1 epidemiology. These findings have important implications for the design, assessment, and implementation of effective HIV-1 intervention and prevention strategies.
Resumo:
A major concern associated with the use of vaccines based on live-attenuated viruses is the possible and well documented reversion to pathogenic phenotypes. In the case of HIV, genomic deletions or mutations introduced to attenuate viral pathogenicity can be repaired by selection of compensating mutations. These events lead to increased virus replication rates and, eventually, disease progression. Because replication competence and degree of protection appear to be directly correlated, further attenuation of a vaccine virus may compromise the ability to elicit a protective immune response. Here, we describe an approach toward a safe attenuated HIV vaccine. The system is not based on permanent reduction of infectivity by alteration of important viral genomic sequences, but on strict control of replication through the insertion of the tetracycline (Tet) system in the HIV genome. Furthermore, extensive in vitro evolution was applied to the prototype Tet-controlled HIV to select for variants with optimized rather than diminished replication capacity. The final product of evolution has properties uniquely suited for use as a vaccine strain. The evolved virus is highly infectious, as opposed to a canonically attenuated virus. It replicates efficiently in T cell lines and in activated and unstimulated peripheral blood mononuclear cells. Most importantly, replication is strictly dependent on the nontoxic Tetanalogue doxycycline and can be turned on and off. These results suggest that this in vitro evolved, doxycycline-dependent HIV might represent a useful tool toward the development of a safer, live-attenuated HIV vaccine.
Resumo:
We inoculated BALB/c mice deficient in STAT6 (STAT6−/−) and their wild-type (wt) littermates (STAT6+/+) with the natural mouse pathogen, ectromelia virus (EV). STAT6−/− mice exhibited increased resistance to generalized infection with EV when compared with STAT6+/+ mice. In the spleens and lymph nodes of STAT6−/− mice, T helper 1 (Th1) cytokines were induced at earlier time points and at higher levels postinfection when compared with those in STAT6+/+ mice. Elevated levels of NO were evident in plasma and splenocyte cultures of EV-infected STAT6−/− mice in comparison with STAT6+/+ mice. The induction of high levels of Th1 cytokines in the mutant mice correlated with a strong natural killer cell response. We demonstrate in genetically susceptible BALB/c mice that the STAT6 locus is critical for progression of EV infection. Furthermore, in the absence of this transcription factor, the immune system defaults toward a protective Th1-like response, conferring pronounced resistance to EV infection and disease progression.
Resumo:
Prostate cancer is the second leading cause of male cancer deaths in the United States. Yet, despite a large international effort, little is known about the molecular mechanisms that underlie this devastating disease. Prostate secretory epithelial cells and androgen-dependent prostate carcinomas undergo apoptosis in response to androgen deprivation and, furthermore, most prostate carcinomas become androgen independent and refractory to further therapeutic manipulations during disease progression. Definition of the genetic events that trigger apoptosis in the prostate could provide important insights into critical pathways in normal development as well as elucidate the perturbations of those key pathways in neoplastic transformation. We report the functional definition of a novel genetic locus within human chromosome 10pter-q11 that mediates both in vivo tumor suppression and in vitro apoptosis of prostatic adenocarcinoma cells. A defined fragment of human chromosome 10 was transferred via microcell fusion into a prostate adenocarcinoma cell line. Microcell hybrids containing only the region 10pter-q11 were suppressed for tumorigenicity following injection of microcell hybrids into nude mice. Furthermore, the complemented hybrids undergo programmed cell death in vitro via a mechanism that does not require nuclear localization of p53. These data functionally define a novel genetic locus, designated PAC1, for prostate adenocarcinoma 1, involved in tumor suppression of human prostate carcinoma and furthermore strongly suggest that the cell death pathway can be functionally restored in prostatic adenocarcinoma.
Resumo:
Transmission of human immunodeficiency virus 1 (HIV-1) from an infected women to her offspring during gestation and delivery was found to be influenced by the infant's major histocompatibility complex class II DRB1 alleles. Forty-six HIV-infected infants and 63 seroreverting infants, born with passively acquired anti-HIV antibodies but not becoming detectably infected, were typed by an automated nucleotide-sequence-based technique that uses low-resolution PCR to select either the simpler Taq or the more demanding T7 sequencing chemistry. One or more DR13 alleles, including DRB1*1301, 1302, and 1303, were found in 31.7% of seroreverting infants and 15.2% of those becoming HIV-infected [OR (odds ratio) = 2.6 (95% confidence interval 1.0-6.8); P = 0.048]. This association was influenced by ethnicity, being seen more strongly among the 80 Black and Hispanic children [OR = 4.3 (1.2-16.4); P = 0.023], with the most pronounced effect among Black infants where 7 of 24 seroreverters inherited these alleles with none among 12 HIV-infected infants (Haldane OR = 12.3; P = 0.037). The previously recognized association of DR13 alleles with some situations of long-term nonprogression of HIV suggests that similar mechanisms may regulate both the occurrence of infection and disease progression after infection. Upon examining for residual associations, only only the DR2 allele DRB1*1501 was associated with seroreversion in Caucasoid infants (OR = 24; P = 0.004). Among Caucasoids the DRB1*03011 allele was positively associated with the occurrence of HIV infection (P = 0.03).
Resumo:
CD8+ cells from long-term survivors [LTS; infected with human immunodeficiency virus (HIV) for 10 or more years and having CD4+ cell counts of > or = 500 cells per microliters] have a 3-fold greater ability to suppress HIV replication than do CD8+ cells from patients who have progressed to disease (progressors) during the same time period. A change in the pattern of cytokines produced in the host from those that typically favor cell-mediated immunity (T helper 1, TH1 or type 1) to those that down-regulate it (T helper 2, TH2 or type 2) was investigated as a cause of this reduced CD8+ cell anti-HIV function. Treatment of CD8+ cells from LTS with the TH1 cytokine interleukin (IL)-2 enhanced their anti-HIV activity, whereas exposure of these cells to TH2 cytokines IL-4 or IL-10 reduced their ability to suppress HIV replication and to produce IL-2. IL-2 could prevent and reverse the inhibitory effects of IL-4 and IL-10. Moreover, prolonged exposure of CD8+ cells from some progressors to IL-2 improved the ability of these cells to suppress HIV replication. These observations support previous findings suggesting that strong CD8+ cell responses play an important role in maintaining an asymptomatic state in HIV infection. The data suggest that the loss of CD8+ cell suppression of HIV replication associated with disease progression results from a shift in cytokine production within the infected host from a TH1 to a TH2 pattern. Modulation of these cytokines could provide benefit to HIV-infected individuals by improving their CD8+ cell anti-HIV activity.