967 resultados para Cyclooxygenase-2 Gene
Resumo:
FUNDAMENTO: A Doença Arterial Coronariana (DAC) é a aterosclerose das artérias coronárias que transportam o sangue para o coração. A aterosclerose é uma doença inflamatória. As variações gênicas das citocinas - como as associadas à família IL1 - fazem parte da patogênese da aterosclerose. OBJETIVO: O objetivo deste estudo foi determinar a relação entre os polimorfismos da família IL1 (VNTR do IL1RN, posições -511 e +3953 do IL1B) e a DAC na população turca. MÉTODOS: Um total de 427 indivíduos foram submetidos à angiografia coronariana e em seguida divididos da seguinte forma: 170 no grupo controle e 257 no grupo de pacientes com DAC. Os sujeitos com DAC foram divididos em dois subgrupos: 91 no grupo de Doença Coronariana em um único vaso (Single Vessel Disease - SVD) e 166 no grupo Doença Coronariana em múltiplos vasos (Multiple Vessel Disease - MVD). Os genótipos de IL1RN e IL1B (-511, +3953) foram determinados por reação em cadeia da polimerase (RCP), seguida de análise da digestão por enzima de restrição. RESULTADOS: Não foram observadas diferenças significantes nas distribuições de genótipos de IL1RN e IL1B (-511 e +3953) entre os sujeitos com DAC e os controles, ou entre sujeitos com MVD e controles. No entanto, observou-se uma relação significante no genótipo IL1RN 2/2 entre sujeitos portadores de SVD e controles (P= 0,016, x2: 10,289, OR: 2,94IC 95% 1,183 - 7,229). Tampouco foi observada diferença estatisticamente significante nas freqüências dos alelos de IL1RN e IL1B (-511 e +3953) entre os sujeitos com DAC e controles, os sujeitos com MVD e controles, ou ainda os sujeitos SVD e controles. CONCLUSÃO: Não foi observada nenhuma relação na freqüência alélica e nem na distribuição genotípica dos polimorfismos de IL1RN e IL1B entre sujeitos com DAC e grupos controle. No entanto, o genótipo IL1RN 2/2 pode representar um fator de risco para sujeitos com SVD na população turca.
Resumo:
FUNDAMENTO: O gene ecto-nucleotídeo pirofosfatase/fosfodiesterase 1 (ENPP1) é um gene candidato à resistência insulínica. A resistência à insulina é um componente importante da síndrome metabólica e tem sido implicada no desenvolvimento de doença cardíaca isquêmica (DCI). OBJETIVO: Avaliar a associação entre o polimorfismo K121Q do gene ENPP1 e a presença da DCI em pacientes caucasianos com diabete melito (DM) tipo 2. MÉTODOS: Estudo transversal foi realizado em pacientes com DM tipo 2 (n=573; 50,6% homens; idade 59,5±10,4 anos). DCI foi definida pela presença de angina ou infarto agudo do miocárdio pelo questionário cardiovascular da Organização Mundial da Saúde e/ou alterações compatíveis no ECG (código Minnesota) ou cintilografia miocárdica. O polimorfismo K121Q foi genotipado através da técnica de PCR e digestão enzimática. RESULTADOS: DCI esteve presente em 209 (36,5%) pacientes. A frequência dos genótipos KK, KQ e QQ entre os pacientes com DCI foi 60,8%, 34,4% e 4,8%, semelhante à distribuição dos genótipos entre os pacientes sem DCI (64,0%, 32,7% e 3,3%, P = 0,574). Não se observou diferença nas características clínicas ou laboratoriais entre os três genótipos, nem em relação à presença de síndrome metabólica. CONCLUSÃO: Nenhuma associação foi encontrada entre o polimorfismo K121A do gene ENPP1 e a presença de DCI ou características fenotípicas de resistência insulínica.
Resumo:
FUNDAMENTO: Quinase Tipo Receptor de Ativina 7 (ALK7) é um tipo de receptor I para a superfamília TGF-β e recentemente apresentou ter uma função importante na manutenção de homeostase metabólica. OBJETIVO: Investigar a associação do polimorfismo do gene ALK7 à síndrome metabólica (SMet) e remodelação cardiovascular em pacientes com SMet. MÉTODOS: O polimorfismo de nucleotídeo único rs13010956 no gene ALK7 foi genotipado em 351 indivíduos chineses submetidos à ultrassonografia cardíaca e das carótidas. As associações do polimorfismo do gene ALK7 ao fenótipo e aos parâmetros da síndrome metabólica e características ultrassônicas cardiovasculares foram analisadas. RESULTADOS: O polimorfismo de rs13010956 no gene ALK7 foi considerado significativamente relacionado ao fenótipo de SMet em mulheres (p < 0,05) e significativamente associado à pressão sanguínea em populações totais (p < 0,05) e femininas (p < 0,01). Outras análises revelaram que rs13010956 estava associado à média da espessura íntima-média de artérias carótidas em mulheres (p < 0,05). Após o controle do índice de massa corporal, pressão arterial, glicemia em jejum e triglicérides, o rs13010956 também foi considerado significativamente associado ao índice de massa do ventrículo esquerdo em populações totais (p < 0,05) e femininas (p < 0,05). CONCLUSÃO: Nossos achados sugeriram que o polimorfismo de rs13010956 do gene ALK7 estava significativamente vinculado ao risco de SMet em mulheres e pode estar envolvido na remodelação cardiovascular em pacientes com SMet.
Resumo:
Background:Studies show an association between changes in apolipoprotein E (ApoE) and LDLR receptor with the occurrence of dyslipidemia.Objectives:To investigate the association between polymorphisms of the APOE (ε2, ε3, ε4) and LDLR (A370T) genes with the persistence of abnormal serum lipid levels in young individuals followed up for 17 years in the Rio de Janeiro Study.Methods:The study included 56 individuals (35 males) who underwent three assessments at different ages: A1 (mean age 13.30 ± 1.53 years), A2 (22.09 ± 1.91 years) and A3 (31.23 ± 1.99 years). Clinical evaluation with measurement of blood pressure (BP) and body mass index (BMI) was conducted at all three assessments. Measurement of waist circumference (WC) and serum lipids, and analysis of genetic polymorphisms by PCR-RFLP were performed at A2 and A3. Based on dyslipidemia tracking, three groups were established: 0 (no abnormal lipid value at A2 and A3), 1 (up to one abnormal lipid value at A2 or A3) and 2 (one or more abnormal lipid values at A2 and A3).Results:Compared with groups 0 and 1, group 2 presented higher mean values of BP, BMI, WC, LDL-c and TG (p < 0.01) and lower mean values of HDL-c (p = 0.001). Across the assessments, all individuals with APOE genotypes ε2/ε4 and ε4/ε4 maintained at least one abnormal lipid variable, whereas those with genotype ε2/ε3 did not show abnormal values (χ2 = 16.848, p = 0.032). For the LDLR genotypes, there was no significant difference among the groups.Conclusions:APOE gene polymorphisms were associated with dyslipidemia in young individuals followed up longitudinally from childhood.
Resumo:
Background: Therapy of chronic hepatitis C (CHC) with pegIFNa/ribavirin achieves sustained virologic response (SVR) in ~55%. Pre-activation of the endogenous interferon system in the liver is associated non-response (NR). Recently, genome-wide association studies described associations of allelic variants near the IL28B (IFNλ3) gene with treatment response and with spontaneous clearance of the virus. We investigated if the IL28B genotype determines the constitutive expression of IFN stimulated genes (ISGs) in the liver of patients with CHC. Methods: We genotyped 93 patients with CHC for 3 IL28B single nucleotide polymorphisms (SNPs, rs12979860, rs8099917, rs12980275), extracted RNA from their liver biopsies and quantified the expression of IL28B and of 8 previously identified classifier genes which discriminate between SVR and NR (IFI44L, RSAD2, ISG15, IFI22, LAMP3, OAS3, LGALS3BP and HTATIP2). Decision tree ensembles in the form of a random forest classifier were used to calculate the relative predictive power of these different variables in a multivariate analysis. Results: The minor IL28B allele (bad risk for treatment response) was significantly associated with increased expression of ISGs, and, unexpectedly, with decreased expression of IL28B. Stratification of the patients into SVR and NR revealed that ISG expression was conditionally independent from the IL28B genotype, i.e. there was an increased expression of ISGs in NR compared to SVR irrespective of the IL28B genotype. The random forest feature score (RFFS) identified IFI27 (RFFS = 2.93), RSAD2 (1.88) and HTATIP2 (1.50) expression and the HCV genotype (1.62) as the strongest predictors of treatment response. ROC curves of the IL28B SNPs showed an AUC of 0.66 with an error rate (ERR) of 0.38. A classifier with the 3 best classifying genes showed an excellent test performance with an AUC of 0.94 and ERR of 0.15. The addition of IL28B genotype information did not improve the predictive power of the 3-gene classifier. Conclusions: IL28B genotype and hepatic ISG expression are conditionally independent predictors of treatment response in CHC. There is no direct link between altered IFNλ3 expression and pre-activation of the endogenous system in the liver. Hepatic ISG expression is by far the better predictor for treatment response than IL28B genotype.
Resumo:
Metabolic traits are molecular phenotypes that can drive clinical phenotypes and may predict disease progression. Here, we report results from a metabolome- and genome-wide association study on (1)H-NMR urine metabolic profiles. The study was conducted within an untargeted approach, employing a novel method for compound identification. From our discovery cohort of 835 Caucasian individuals who participated in the CoLaus study, we identified 139 suggestively significant (P<5×10(-8)) and independent associations between single nucleotide polymorphisms (SNP) and metabolome features. Fifty-six of these associations replicated in the TasteSensomics cohort, comprising 601 individuals from São Paulo of vastly diverse ethnic background. They correspond to eleven gene-metabolite associations, six of which had been previously identified in the urine metabolome and three in the serum metabolome. Our key novel findings are the associations of two SNPs with NMR spectral signatures pointing to fucose (rs492602, P = 6.9×10(-44)) and lysine (rs8101881, P = 1.2×10(-33)), respectively. Fine-mapping of the first locus pinpointed the FUT2 gene, which encodes a fucosyltransferase enzyme and has previously been associated with Crohn's disease. This implicates fucose as a potential prognostic disease marker, for which there is already published evidence from a mouse model. The second SNP lies within the SLC7A9 gene, rare mutations of which have been linked to severe kidney damage. The replication of previous associations and our new discoveries demonstrate the potential of untargeted metabolomics GWAS to robustly identify molecular disease markers.
Resumo:
The voltage-gated cardiac potassium channel hERG1 (human ether-à-gogo-related gene 1) plays a key role in the repolarization phase of the cardiac action potential (AP). Mutations in its gene, KCNH2, can lead to defects in the biosynthesis and maturation of the channel, resulting in congenital long QT syndrome (LQTS). To identify the molecular mechanisms regulating the density of hERG1 channels at the plasma membrane, we investigated channel ubiquitylation by ubiquitin ligase Nedd4-2, a post-translational regulatory mechanism previously linked to other ion channels. We found that whole-cell hERG1 currents recorded in HEK293 cells were decreased upon neural precursor cell expressed developmentally down-regulated 4-2 (Nedd4-2) co-expression. The amount of hERG1 channels in total HEK293 lysates and at the cell surface, as assessed by Western blot and biotinylation assays, respectively, were concomitantly decreased. Nedd4-2 and hERG1 interact via a PY motif located in the C-terminus of hERG1. Finally, we determined that Nedd4-2 mediates ubiquitylation of hERG1 and that deletion of this motif affects Nedd4-2-dependent regulation. These results suggest that ubiquitylation of the hERG1 protein by Nedd4-2, and its subsequent down-regulation, could represent an important mechanism for modulation of the duration of the human cardiac action potential.
Resumo:
Anatomical structures and mechanisms linking genes to neuropsychiatric disorders are not deciphered. Reciprocal copy number variants at the 16p11.2 BP4-BP5 locus offer a unique opportunity to study the intermediate phenotypes in carriers at high risk for autism spectrum disorder (ASD) or schizophrenia (SZ). We investigated the variation in brain anatomy in 16p11.2 deletion and duplication carriers. Beyond gene dosage effects on global brain metrics, we show that the number of genomic copies negatively correlated to the gray matter volume and white matter tissue properties in cortico-subcortical regions implicated in reward, language and social cognition. Despite the near absence of ASD or SZ diagnoses in our 16p11.2 cohort, the pattern of brain anatomy changes in carriers spatially overlaps with the well-established structural abnormalities in ASD and SZ. Using measures of peripheral mRNA levels, we confirm our genomic copy number findings. This combined molecular, neuroimaging and clinical approach, applied to larger datasets, will help interpret the relative contributions of genes to neuropsychiatric conditions by measuring their effect on local brain anatomy.Molecular Psychiatry advance online publication, 25 November 2014; doi:10.1038/mp.2014.145.
Resumo:
CD8 T cells play a key role in mediating protective immunity against selected pathogens after vaccination. Understanding the mechanism of this protection is dependent upon definition of the heterogeneity and complexity of cellular immune responses generated by different vaccines. Here, we identify previously unrecognized subsets of CD8 T cells based upon analysis of gene-expression patterns within single cells and show that they are differentially induced by different vaccines. Three prime-boost vector combinations encoding HIV Env stimulated antigen-specific CD8 T-cell populations of similar magnitude, phenotype, and functionality. Remarkably, however, analysis of single-cell gene-expression profiles enabled discrimination of a majority of central memory (CM) and effector memory (EM) CD8 T cells elicited by the three vaccines. Subsets of T cells could be defined based on their expression of Eomes, Cxcr3, and Ccr7, or Klrk1, Klrg1, and Ccr5 in CM and EM cells, respectively. Of CM cells elicited by DNA prime-recombinant adenoviral (rAd) boost vectors, 67% were Eomes(-) Ccr7(+) Cxcr3(-), in contrast to only 7% and 2% stimulated by rAd5-rAd5 or rAd-LCMV, respectively. Of EM cells elicited by DNA-rAd, 74% were Klrk1(-) Klrg1(-)Ccr5(-) compared with only 26% and 20% for rAd5-rAd5 or rAd5-LCMV. Definition by single-cell gene profiling of specific CM and EM CD8 T-cell subsets that are differentially induced by different gene-based vaccines will facilitate the design and evaluation of vaccines, as well as enable our understanding of mechanisms of protective immunity.
Resumo:
In liver, the glyoxylate cycle contributes to two metabolic functions, urea and glucose synthesis. One of the key enzymes in this pathway is glyoxylate reductase/hydroxypyruvate reductase (GRHPR) whose dysfunction in human causes primary hyperoxaluria type 2, a disease resulting in oxalate accumulation and formation of kidney stones. In this study, we provide evidence for a transcriptional regulation by the peroxisome proliferator-activated receptor alpha (PPARalpha) of the mouse GRHPR gene in liver. Mice fed with a PPARalpha ligand or in which PPARalpha activity is enhanced by fasting increase their GRHPR gene expression via a peroxisome proliferator response element located in the promoter region of the gene. Consistent with these observations, mice deficient in PPARalpha present higher plasma levels of oxalate in comparison with their wild type counterparts. As expected, the administration of a PPARalpha ligand (Wy-14,643) reduces the plasma oxalate levels. Surprisingly, this effect is also observed in null mice, suggesting a PPARalpha-independent action of the compound. Despite a high degree of similarity between the transcribed region of the human and mouse GRHPR gene, the human promoter has been dramatically reorganized, which has resulted in a loss of PPARalpha regulation. Overall, these data indicate a species-specific regulation by PPARalpha of GRHPR, a key gene of the glyoxylate cycle.
Resumo:
The fire ant Solenopsis invicta and its close relatives display an important social polymorphism involving differences in colony queen number. Colonies are headed by either a single reproductive queen (monogyne form) or multiple queens (polygyne form). This variation in social organization is associated with variation at the gene Gp-9, with monogyne colonies harboring only B-like allelic variants and polygyne colonies always containing b-like variants as well. We describe naturally occurring variation at Gp-9 in fire ants based on 185 full-length sequences, 136 of which were obtained from S. invicta collected over much of its native range. While there is little overall differentiation between most of the numerous alleles observed, a surprising amount is found in the coding regions of the gene, with such substitutions usually causing amino acid replacements. This elevated coding-region variation may result from a lack of negative selection acting to constrain amino acid replacements over much of the protein, different mutation rates or biases in coding and non-coding sequences, negative selection acting with greater strength on non-coding than coding regions, and/or positive selection acting on the protein. Formal selection analyses provide evidence that the latter force played an important role in the basal b-like lineages coincident with the emergence of polygyny. While our data set reveals considerable paraphyly and polyphyly of S. invicta sequences with respect to those of other fire ant species, the b-like alleles of the socially polymorphic species are monophyletic. An expanded analysis of colonies containing alleles of this clade confirmed the invariant link between their presence and expression of polygyny. Finally, our discovery of several unique alleles bearing various combinations of b-like and B-like codons allows us to conclude that no single b-like residue is completely predictive of polygyne behavior and, thus, potentially causally involved in its expression. Rather, all three typical b-like residues appear to be necessary.
Resumo:
A key aspect of glucose homeostasis is the constant monitoring of blood glucose concentrations by specific glucose sensing units. These sensors, via stimulation of hormone secretion and activation of the autonomic nervous system (ANS), regulate tissue glucose uptake, utilization or production. The best described glucose detection system is that of the pancreatic beta-cells which controls insulin secretion. Secretion of other hormones, in particular glucagon, and activation of the ANS, are regulated by glucose through sensing mechanisms which are much less well characterized. Here I review some of the studies we have performed over the recent years on a mouse model of impaired glucose sensing generated by inactivation of the gene for the glucose transporter GLUT2. This transporter catalyzes glucose uptake by pancreatic beta-cells, the first step in the signaling cascade leading to glucose-stimulated insulin secretion. Inactivation of its gene leads to a loss of glucose sensing and impaired insulin secretion. Transgenic reexpression of the transporter in GLUT2/beta-cells restores their normal secretory function and rescues the mice from early death. As GLUT2 is also expressed in other tissues, these mice were then studied for the presence of other physiological defects due to absence of this transporter. These studies led to the identification of extra-pancreatic, GLUT2-dependent, glucose sensors controlling glucagon secretion and glucose utilization by peripheral tissues, in part through a control of the autonomic nervous system.
Resumo:
Life on earth is subject to the repeated change between day and night periods. All organisms that undergo these alterations have to anticipate consequently the adaptation of their physiology and possess an endogenous periodicity of about 24 hours called circadian rhythm from the Latin circa (about) and diem (day). At the molecular level, virtually all cells of an organism possess a molecular clock which drives rhythmic gene expression and output functions. Besides altered rhythmicity in constant conditions, impaired clock function causes pathophysiological conditions such as diabetes or hypertension. These data unveil a part of the mechanisms underlying the well-described epidemiology of shift work and highlight the function of clock-driven regulatory mechanisms. The post-translational modification of proteins by the ubiquitin polypeptide is a central mechanism to regulate their stability and activity and is capital for clock function. Similarly to the majority of biological processes, it is reversible. Deubiquitylation is carried out by a wide variety of about ninety deubiquitylating enzymes and their function remains poorly understood, especially in vivo. This class of proteolytic enzymes is parted into five families including the Ubiquitin-Specific Proteases (USP), which is the most important with about sixty members. Among them, the Ubiquitin-Specific Protease 2 (Usp2) gene encodes two protein isoforms, USP2-45 and USP2-69. The first is ubiquitously expressed under the control of the circadian clock and displays all features of core clock genes or its closest outputs effectors. Additionally, Usp2-45 was also found to be induced by the mineralocorticoid hormone aldosterone and thought to participate in Na+ reabsorption and blood pressure regulation by Epithelial Na+ Channel ENaC in the kidneys. During my thesis, I aimed to characterize the role of Usp2 in vivo with respect to these two areas, by taking advantage of a total constitutive knockout mouse model. In the first project I aimed to validate the role of USP2-45 in Na+ homeostasis and blood pressure regulation by the kidneys. I found no significant alterations of diurnal Na+ homeostasis and blood pressure in these mice, indicating that Usp2 does not play a substantial role in this process. In urine analyses, we found that our Usp2-KO mice are actually hypercalciuric. In a second project, I aimed to understand the causes of this phenotype. I found that the observed hypercalciuria results essentially from intestinal hyperabsorption. These data reveal a new role for Usp2 as an output effector of the circadian clock in dietary Ca2+ metabolism in the intestine.
Resumo:
The need for better gene transfer systems towards improved risk=benefit balance for patients remains a major challenge in the clinical translation of gene therapy (GT). We have investigated the improvement of integrating vectors safety in combining (i) new short synthetic genetic insulator elements (GIE) and (ii) directing genetic integration to heterochromatin. We have designed SIN-insulated retrovectors with two candidate GIEs and could identify a specific combination of insulator 2 repeats which translates into best functional activity, high titers and boundary effect in both gammaretro (p20) and lentivectors (DCaro4) (see Duros et al, abstract ibid). Since GIEs are believed to shield the transgenic cassette from inhibitory effects and silencing, DCaro4 has been further tested with chimeric HIV-1 derived integrases which comprise C-ter chromodomains targeting heterochromatin through either histone H3 (ML6chimera) or methylatedCpGislands (ML10). With DCaro4 only and both chimeras, a homogeneous expression is evidenced in over 20% of the cells which is sustained over time. With control lentivectors, less than 2% of cells express GFP as compared to background using a control double-mutant in both catalytic and ledgf binding-sites; in addition, a two-times increase of expression can be induced with histone deacetylase inhibitors. Our approach could significantly reduce integration into open chromatin sensitive sites in stem cells at the time of transduction, a feature which might significantly decrease subsequent genotoxicity, according to X-SCIDs patients data.Work performed with the support of EC-DG research within the FP6-Network of Excellence, CLINIGENE: LSHB-CT-2006-018933
Resumo:
Clozapine, an atypical antipsychotic, depends mainly on cytochrome P4501A2 (CYP1A2) for its metabolic clearance. CYP1A2 is inducible by smoking, and lower plasma concentrations of clozapine are measured in smokers than in nonsmokers. Case reports have been published on the effects of discontinuing smoking in patients receiving clozapine, which might lead to elevated plasma concentrations and severe side effects. We present 2 cases on the consequences of smoking cessation in patients receiving this drug. In the first patient, smoking cessation resulted, within 2 weeks, in severe sedation and fatigue, with an approximately 3-fold increase of plasma clozapine concentrations. In the second patient, a very high plasma concentration of clozapine (3004 ng/mL) was measured 6 days following a 16-day stay in a general hospital, during which smoking was prohibited. In the latter patient, the replacement of omeprazole, a strong CYP1A2 inducer, by pantoprazole, a weaker CYP1A2 inducer, could have contributed, in addition to smoking cessation, to the observed strong increase of plasma clozapine concentrations. Genotyping of the 2 patients revealed that they were carriers of the AA genotype for the -164C>A polymorphism (CYP1A2*1F) in intron 1 of CYP1A2 gene, which has previously been shown to confer a high inducibility of CYP1A2 by smoking. Thus, at the initiation of clozapine treatment, smoking patients should be informed that, if they decide to stop smoking, they are encouraged to do so but must inform their prescriber beforehand. Also, because of the increased use of no-smoking policies in many hospitals, studies examining the consequences of such policies on the pharmacokinetics/pharmacodynamics of drugs metabolized by CYP1A2, taking into account different CYP1A2 genotypes, are needed.