956 resultados para Cut Chrysanthemum
Resumo:
We present a fast algorithm for computing a Gomory-Hu tree or cut tree for an unweighted undirected graph G = (V,E). The expected running time of our algorithm is Õ(mc) where |E| = m and c is the maximum u-vedge connectivity, where u,v ∈ V. When the input graph is also simple (i.e., it has no parallel edges), then the u-v edge connectivity for each pair of vertices u and v is at most n-1; so the expected running time of our algorithm for simple unweighted graphs is Õ(mn).All the algorithms currently known for constructing a Gomory-Hu tree [8,9] use n-1 minimum s-t cut (i.e., max flow) subroutines. This in conjunction with the current fastest Õ(n20/9) max flow algorithm due to Karger and Levine [11] yields the current best running time of Õ(n20/9n) for Gomory-Hu tree construction on simpleunweighted graphs with m edges and n vertices. Thus we present the first Õ(mn) algorithm for constructing a Gomory-Hu tree for simple unweighted graphs.We do not use a max flow subroutine here; we present an efficient tree packing algorithm for computing Steiner edge connectivity and use this algorithm as our main subroutine. The advantage in using a tree packing algorithm for constructing a Gomory-Hu tree is that the work done in computing a minimum Steiner cut for a Steiner set S ⊆ V can be reused for computing a minimum Steiner cut for certain Steiner sets S' ⊆ S.
Resumo:
In the present talk, we will discuss a six dimensional mass generation for the neutrinos. The SM neutrinos live on a 3-brane and interact via a brane localised mass term with a Weyl singlet neutrino residing in all the six dimensions. We present the physical neutrino mass spectrum and show that the active neutrino mass and the KK masses have a logarithmic cut-off dependence at the tree level. This translates in to a renormalisation group running of n -masses above the KK compactification scale coming from classical effects without any SM particles in the spectrum.This could have effects in neutrinoless double beta decay experiments.
Resumo:
The concept of interference alignment when extended to three-source three-destination instantaneous multiple unicast network for the case where, each source-destination pair has a min-cut of 1 and zero-interference conditions are not satisfied, is known to achieve a rate of half for every source-destination pair under certain conditions [6]. This was called network alignment. We generalize this concept of network alignment to three-source three-destination multiple unicast (3S-3D-MU) networks with delays, without making use of memory at the intermediate nodes (i.e., nodes other than the sources and destinations) and using time varying Local Encoding Kernels (LEKs). This achieves half the rate corresponding to the individual source-destination min-cut for some classes of 3S-3D-MU network with delays which do not satisfy the zero-interference conditions.
Resumo:
Combination of femtosecond Kerr, two photon absorption, and impulsive stimulated Raman scattering (ISRS) experiments have been carried out to investigate the effect of pulse energy and crystal temperature on the generation of coherent polaritons and phonons in 〈110〉 cut ZnTe single crystals of three different resistivities. We demonstrate that the effect of two photon induced free carriers on the creation of both the polaritons and phonons is largest at 4 K where the free carrier lifetime is enhanced. The temperature dependant ISRS on high and low purity ZnTe crystals allows us to unambiguously assign the phonon mode at 3.5 THz to the longitudinal acoustic mode at X-point in the Brillouin zone, LA(X).
Resumo:
We consider the vector and scalar form factors of the charm-changing current responsible for the semileptonic decay D -> pi/nu. Using as input dispersion relations and unitarity for the moments of suitable heavy-light correlators evaluated with Operator Product Expansions, including O(alpha(2)(s)) terms in perturbative QCD, we constrain the shape parameters of the form factors and find exclusion regions for zeros on the real axis and in the complex plane. For the scalar form factor, a low-energy theorem and phase information on the unitarity cut are also implemented to further constrain the shape parameters. We finally propose new analytic expressions for the D pi form factors, derive constraints on the relevant coefficients from unitarity and analyticity, and briefly discuss the usefulness of the new parametrizations for describing semileptonic data.
Resumo:
The data obtained in the earlier parts of this series for the donor and acceptor end parameters of N-H. O and O-H. O hydrogen bonds have been utilised to obtain a qualitative working criterion to classify the hydrogen bonds into three categories: “very good” (VG), “moderately good” (MG) and weak (W). The general distribution curves for all the four parameters are found to be nearly of the Gaussian type. Assuming that the VG hydrogen bonds lie between 0 and ± la, MG hydrogen bonds between ± 1s̀ and ± 2s̀, W hydrogen bonds beyond ± 2s̀ (where s̀ is the standard deviation), suitable cut-off limits for classifying the hydrogen bonds in the three categories have been derived. These limits are used to get VG and MG ranges for the four parameters 1 and θ (at the donor end) and ± and ± (at the acceptor end). The qualitative strength of a hydrogen bond is decided by the cumulative application of the criteria to all the four parameters. The criterion has been further applied to some practical examples in conformational studies such as α-helix and can be used for obtaining suitable location of hydrogen atoms to form good hydrogen bonds. An empirical approach to the energy of hydrogen bonds in the three categories has also been presented.
Resumo:
This paper presents the results of a study on the effect of alumina nano-fillers on electrical tree growth in epoxy insulation. Treeing experiments were conducted at a fixed ac voltage of 15 kV, 50 Hz on unfilled epoxy samples as well as epoxy nanocomposites with different loadings of alumina nano-fillers. Time for tree inception as well as tree growth patterns were studied. The results show that there is a significant improvement in tree initiation time with the increase in nano-filler loading. Different tree growth patterns as well as slower tree growth with increasing filler loadings were observed in epoxy nanocomposites. The nature of the tree channel and the elemental composition of the material on the inner lining of the tree channels have been studied using SEM imaging and EDAX analysis respectively of the cut section of the tree channels. It has been shown that the type of bonding at the interface has an influence on the electrical tree growth pattern. The nature of the bonding at the interface between the epoxy and the nano-filler has been studied using FTIR spectrometry. Finally the influence of the interface on tree growth phenomena in nanocomposites has been explained by a physical model.
Resumo:
We present a timing and broad-band pulse-phase-resolved spectral analysis of the transient Be X-ray binary pulsar 1A 1118-61 observed during its outburst in 2009 January using Suzaku observations. The Suzaku observations were made twice, once at the peak of the outburst, and the other 13 d later at its declining phase. Pulse profiles from both observations exhibit strong energy dependence with several peaks at low energies and a single peak above similar to 10 keV. A weak, narrow peak is detected at the main dip of the pulse profiles from both observations in the energy bands below 3 keV, indicating the presence of a phase-dependent soft excess in the source continuum. The broad-band energy spectrum of the pulsar could be fitted well with a partial covering cut-off power-law model and a narrow iron fluorescence line. We also detect a broad cyclotron feature at similar to 50 keV from both observations which is a feature common for accretion-powered pulsars with high magnetic field strength. The pulse-phase-resolved spectral analysis shows an increase in the absorption column density of the partial covering component, as well as variation in the covering fraction at the dips of the pulse profiles, which naturally explains energy dependence of the same. The cyclotron line parameters also show significant variation with pulse phase with an similar to 10 keV variation in the cyclotron line energy and a variation in depth by a factor of 3. This can be explained either as the effect of different viewing angles of the dipole field at different pulse phases, or due to a more complex underlying magnetic field geometry.
Resumo:
In this paper, an ultrasonic wave propagation analysis in single-walled carbon nanotube (SWCNT) is re-studied using nonlocal elasticity theory, to capture the whole behaviour. The SWCNT is modeled using Flugge's shell theory, with the wall having axial, circumferential and radial degrees of freedom and also including small scale effects. Nonlocal governing equations for this system are derived and wave propagation analysis is also carried out. The revisited nonlocal elasticity calculation shows that the wavenumber tends to infinite at certain frequencies and the corresponding wave velocity tends to zero at those frequencies indicating localization and stationary behavior. This frequency is termed as escape frequency. This behavior is observed only for axial and radial waves in SWCNT. It has been shown that the circumferential waves will propagate dispersively at higher frequencies in nonlocality. The magnitudes of wave velocities of circumferential waves are smaller in nonlocal elasticity as compared to local elasticity. We also show that the explicit expressions of cut-off frequency depend on the nonlocal scaling parameter and the axial wavenumber. The effect of axial wavenumber on the ultrasonic wave behavior in SWCNTs is also discussed. The present results are compared with the corresponding results (for first mode) obtained from ab initio and 3-D elastodynamic continuum models. The acoustic phonon dispersion relation predicted by the present model is in good agreement with that obtained from literature. The results are new and can provide useful guidance for the study and design of the next generation of nanodevices that make use of the wave propagation properties of single-walled carbon nanotubes.
Resumo:
The commercial automotive mufflers are generally of a complicated shape with multiply connected parts and complex acoustic elements. The analysis of such complex mufflers has always been a great challenge. In this paper, an Integrated Transfer Matrix method has been developed to analyze complex mufflers. Integrated transfer matrix relates the state variables across the entire cross-section of the muffler shell, as one moves along the axis of the muffler, and can be partitioned appropriately in order to relate the state variables of different tubes constituting the cross-section. The paper presents a generalized one-dimensional (1-D) approach, using the transfer matrices of simple acoustic elements, which are available from the literature. The present approach is robust and flexible owing to its capability to construct an overall matrix of the muffler with the transfer matrices of individual acoustic elements and boundary conditions, which can then be used to evaluate the transmission loss, insertion loss, etc. Results from the present approach have been validated through comparisons with the available experimental and three-dimensional finite element method (FEM) based results. The results show good agreement with both measurements and FEM analysis up to the cut-off frequency. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, the diversity-multiplexing gain tradeoff (DMT) of single-source, single-sink (ss-ss), multihop relay networks having slow-fading links is studied. In particular, the two end-points of the DMT of ss-ss full-duplex networks are determined, by showing that the maximum achievable diversity gain is equal to the min-cut and that the maximum multiplexing gain is equal to the min-cut rank, the latter by using an operational connection to a deterministic network. Also included in the paper, are several results that aid in the computation of the DMT of networks operating under amplify-and-forward (AF) protocols. In particular, it is shown that the colored noise encountered in amplify-and-forward protocols can be treated as white for the purpose of DMT computation, lower bounds on the DMT of lower-triangular channel matrices are derived and the DMT of parallel MIMO channels is computed. All protocols appearing in the paper are explicit and rely only upon AF relaying. Half-duplex networks and explicit coding schemes are studied in a companion paper.
Resumo:
Regenerating codes are a class of recently developed codes for distributed storage that, like Reed-Solomon codes, permit data recovery from any arbitrary of nodes. However regenerating codes possess in addition, the ability to repair a failed node by connecting to any arbitrary nodes and downloading an amount of data that is typically far less than the size of the data file. This amount of download is termed the repair bandwidth. Minimum storage regenerating (MSR) codes are a subclass of regenerating codes that require the least amount of network storage; every such code is a maximum distance separable (MDS) code. Further, when a replacement node stores data identical to that in the failed node, the repair is termed as exact. The four principal results of the paper are (a) the explicit construction of a class of MDS codes for d = n - 1 >= 2k - 1 termed the MISER code, that achieves the cut-set bound on the repair bandwidth for the exact repair of systematic nodes, (b) proof of the necessity of interference alignment in exact-repair MSR codes, (c) a proof showing the impossibility of constructing linear, exact-repair MSR codes for d < 2k - 3 in the absence of symbol extension, and (d) the construction, also explicit, of high-rate MSR codes for d = k+1. Interference alignment (IA) is a theme that runs throughout the paper: the MISER code is built on the principles of IA and IA is also a crucial component to the nonexistence proof for d < 2k - 3. To the best of our knowledge, the constructions presented in this paper are the first explicit constructions of regenerating codes that achieve the cut-set bound.
Resumo:
In this paper, ultrasonic wave propagation analysis in fluid filled single-walled carbon nanotube (SWCNT) is studied using nonlocal elasticity theory. The SWCNT is modeled using Flugge's shell theory, with the wall having axial, circumferential and radial degrees of freedom and also including small scale effects. The fluid inside the SWCNT is assumed as water. Nonlocal governing equations for this system are derived and wave propagation analysis is also carried out. The presence of fluid in SWCNT alters the ultrasonic wave dispersion behavior. The wavenumber and wave velocity are smaller in presence of fluid as compared to the empty SWCNT. The nonlocal elasticity calculation shows that the wavenumber tends to reach the continuum limit at certain frequencies and the corresponding wave velocity tends to zero at those frequencies indicating localization and stationary behavior. It has been shown that the circumferential. waves will propagate non-dispersively at higher frequencies in nonlocality. The magnitudes of wave velocities of circumferential waves are smaller in nonlocal elasticity as compared to local elasticity. We also show that the cut-off frequency depend on the nonlocal scaling parameter and also on the density of the fluid inside the SWCNT, and the axial wavenumber, as the fluid becomes denser the cut-off frequency decreases. The effect of axial wavenumber on the ultrasonic wave behavior in SWCNTS filled with water is also discussed.
Resumo:
This paper presents the effect of nonlocal scaling parameter on the coupled i.e., axial, flexural, shear and contraction, wave propagation in single-walled carbon nanotubes (SWCNTs). The axial and transverse motion of SWCNT is modeled based on first order shear deformation theory (FSDT) and thickness contraction. The governing equations are derived based on nonlocal constitutive relations and the wave dispersion analysis is also carried out. The studies shows that the nonlocal scale parameter introduces certain band gap region in all wave modes where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite or wave speed tends to zero. The frequency at which this phenomenon occurs is called the escape frequency. Explicit expressions are derived for cut-off and escape frequencies of all waves in SWCNT. It is also shown that the cut-off frequencies of shear and contraction mode are independent of the nonlocal scale parameter. The results provided in this article are new and are useful guidance for the study and design of the next generation of nanodevices that make use of the coupled wave propagation properties of single-walled carbon nanotubes.
Resumo:
We study the shape parameters of the Dπ scalar and vector form factors using as input dispersion relations and unitarity for the moments of suitable heavy-light correlators evaluated with Operator Product Expansions, including O(α 2 s) terms in perturbative QCD. For the scalar form factor, a low energy theorem and phase information on the unitarity cut are implemented to further constrain the shape parameters. We finally determine points on the real axis and isolate regions in the complex energy plane where zeros of the form factors are excluded.