979 resultados para Cu-ZnO-ZrO2 : HZSM-5
Leaching of Ni and Cu from mine wastes (tailings and slags) using acid solutions and A. ferrooxidans
Resumo:
The objective of this work is to evaluate the acidic and biological leaching of tailings containing Ni/Cu from a flotation and smelting plant. Acidithiobacillus ferrooxidans, strain LR, was used for bioleaching at pH 1.8 and chemical controls were run parallel to that. The acidic leaching was done within 48 hours at pH 0.5 and 1.0. In the slag inoculated flasks the redox potential was high (600 mV), thus indicating oxidative bacterial activity, however, the obtained results after 15 days showed only around 13% Ni and 8% Cu extractions, which were not different to those of the controls. For the flotation tailings bioleaching extractions were approximately 45% for Ni and 16% for Cu while differing figures were obtained for the chemical controls. These were 30% and 12% respectively. Here we could observe that the presence of bacterial activity led to a higher solubility of Ni. Acid leaching of slag showed higher nickel and copper extractions: 56% and 24% respectively at pH 0.5 and 21% and 11% at pH 1.0. However, the acid consumption was 320 and 150 Kg/ton of slag, respectively, both much higher than in bacterial assays. These results indicated that Ni and Cu solubilization from the slag is acid dependent no matter the redox potential or ferric iron concentration of the leaching solution. For flotation tailings, acid treatment showed extractions of 23% for Ni and 16% for copper at pH 0.5 and 22% and 28%, respectively at pH 1.0. The acid consumption was also higher: 220 and 120 Kg/ton, at pH 0.5 and 1.0, respectively. Based on own findings we could observe that acid leaching is found to be more effective for slag, though the acid consumption is much higher, while for the flotation tailings, bacterial leaching seems to be the best alternative. © (2009) Trans Tech Publications.
Resumo:
Sewage sludge may be used as an agricultural fertilizer, but the practice has been criticized because sludge may contain trace elements and pathogens. The aim of this study was to compare the effectiveness of total and pseudototal extractants of Cu, Fe, Mn, and Zn, and to compare the results with the bioavailable concentrations of these elements to maize and sugarcane in a soil that was amended with sewage sludge for 13 consecutive years and in a separate soil that was amended a single time with sewage sludge and composted sewage sludge. The 13-year amendment experiment involved 3 rates of sludge (5, 10, and 20 t ha-1). The one-time amendment experiment involved treatments reflecting 50, 100, and 200 % of values stipulated by current legislation. The metal concentrations extracted by aqua regia (AR) were more similar to those obtained by Environmental Protection Agency (EPA) 3052 than to those obtained by EPA3051, and the strongest correlation was observed between pseudo(total) concentrations extracted by AR and EPA3052 and bioavailable concentrations obtained by Mehlich III. An effect of sewage sludge amendment on the concentrations of heavy metals was only observed in samples from the 13-year experiment. © 2012 Springer Science+Business Media B.V.
Resumo:
In this paper, we report on a field experiment being carried out in a Typic Eutrorthox. The experiment was initiated in the 1997-98 agricultural season as a randomized block design with four treatments (0, 5, 10, and 20 t ha -1) of sewage sludge and five replicates. Compound soil samples were obtained from 20 subsamples collected at depths of 0-0.1 and 0.1-0.2 m. Cu, Fe, Mn, and Zn concentrations were extracted with DTPA pH 7.3; 0.1 mol L -1 HCl, Mehlich-I, Mehlich-III, and 0.01 mol L-1 CaCl 2. Metal concentrations were determined via atomic absorption spectrometry. Diagnostic leaves and the whole above-ground portion of plants were collected to determine Cu, Fe, Mn, and Zn concentrations extracted by nitric-perchloric digestion and later determined via atomic absorption spectrometry. Sewage sludge application caused increases in the concentrations of soil Cu, Fe, and Mn in samples taken from the 0-0.1 m depth evaluated by the extractants Mehlich-I, Mehlich-III, 0.01 mol L-1 HCl and DTPA pH 7.3. None of the extractants provided efficient estimates of changes in Mn concentrations. The acid extractants extracted more Cu, Fe, Mn, and Zn than the saline and chelating solutions. The highest concentrations of Cu, Fe, and Zn were obtained with Mehlich-III, while the highest concentrations of Mn were obtained with HCl. We did not observe a correlation between the extractants and the concentrations of elements in the diagnostic leaves nor in the tissues of the whole maize plant (Zea mays L.). © 2013 Springer Science+Business Media Dordrecht.
Resumo:
The degradation phenomena of ZnO and SnO2-based varistors were investigated for two different degradation methods: DC voltage at increased temperature and degradation with 8/20 μs pulsed currents (lightning type). Electrostatic force microscopy (EFM) was used to analyze the surface charge accumulated at grain-boundary regions before and after degradation. Before the degradation process, 85% of the barriers are active in the SnO2 system, while the ZnO system presents only 30% effective barriers. Both systems showed changes in the electrical behavior when degraded with pulses. In the case of the ZnO system, the behavior after pulse degradation was essentially ohmic due to the destruction of barriers (about 99% of the interfaces are conductive). After the degradation with 8/20 μs pulsed currents, the SnO2 system still presents nonohmic behavior with a significant decrease in the quantity of effective barriers (from 85% to 5%). However, when the degradation is accomplished with continuous current, the SnO2 system exhibits minimum variation, while the ZnO system degrades from 30% to 5%. This result indicates the existence of metastable defects of low concentration and/or low diffusion in the SnO2 system. High energy is necessary to degrade the barriers due to defect annihilation in the SnO2 system. © 2013 The American Ceramic Society.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)