922 resultados para Cu-Zn-Al alloys
Resumo:
he thermodynamic acitivity of chromium in liquid Cu-Cr alloys is measured in the temperature range from 1473 to 1873 K using the solid state cell: Pt, W, Cr + Cr2O3 |(Y2O3) ThO2|Cu - Cr + Cr2O3, Pt The activity of copper and the Gibbs energy of mixing of the liquid alloy are derived. Activities exhibit large positive deviations from Raoult's law. The mixing properties can be represented by a pseudo-subregular solution model in which the excess entropy has the same type of functional dependence on composition as the enthalpy of mixing: ΔGE = XCr(1 - XCr)[60880 - 18750 XCr)-- T(16.25 - 7.55 XCr)]J mol-1 Pure liquid Cu and Cr are taken as the reference states. The results predict a liquid-liquid metastable miscibility gap, with TC = 1787 (±3) K and XCr = 0.436 (±0.02), lying below the liquidus. The results obtained in this study are in general agreement with experimental information reported in the literature, but provide further refinement of the thermodynamic parameters.
Resumo:
Electron diffraction and high-resolution electron microscopy have been employed to differentiate among icosahedral, decagonal and crystalline particles that occur in as-cast and rapidly solidified Al-Mn-Cu alloys. The resemblance between decagonal quasicrystals and crystals in their electron diffraction patterns is striking. The crystalline structure is based on the orthorhombic ‘Al3Mn’ structure, but also a new monoclinic phase called ‘X’ has been discovered and described here. The present observations are also closely related to the orthorhombic structures in Al60Mn11Ni4. The occurrence of fine-scale twinning and fragmentation into domains explains the complex diffraction effects.
Resumo:
In steel refining process, an increase of interfacial area between the metal and slag through the metal droplets emulsified into the slag, so-called ``metal emulsion'', is one prevailing view for improving the reaction rate. The formation of metal emulsion was experimentally evaluated using Al-Cu alloy as metal phase and chloride salt as slag phase under the bottom bubbling condition. Samples were collected from the center of the salt phase in the container. Large number of metal droplets were separated from the salt by dissolving it into water. The number, surface area, and weight of the droplets increased with the gas flow rate and have local maximum values. The formation and sedimentation rates of metal droplets were estimated using a mathematical model. The formation rate increased with the gas flow rate and has a local maximum value as a function of gas flow rate, while the sedimentation rate is independent of the gas flow rate under the bottom bubbling condition. Three types of formation mode of metal emulsion, which occurred by the rupture of metal film around the bubble, were observed using high speed camera. During the process, an elongated column covered with metal film was observed with the increasing gas flow rate. This elongated column sometimes reached to the top surface of the salt phase. In this case, it is considered that fine droplets were not formed and in consequence, the weight of metal emulsion decreased at higher gas flow rate.
Resumo:
This paper attempts a quantitative understanding of the effect of length scale on two phase eutectic structure. We first develop a model that considers both the elastic and plastic properties of the interface. Using Al-Al2Cu lamellar eutectic as model system, the parameters of the model were experimentally determined using indentation technique. The model is further validated using the results of bulk compression testing of the eutectics having different length scales. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4761944]
Resumo:
Sn-Ag-Cu (SAC) solders are susceptible to appreciable microstructural coarsening during storage or service. This results in evolution of joint properties over time, and thereby influences the long-term reliability of microelectronic packages. Accurate prediction of this aging behavior is therefore critical for joint reliability predictions. Here, we study the precipitate coarsening behavior in two Sn-Ag-Cu (SAC) alloys, namely Sn-3.0Ag-0.5Cu and Sn-1.0Cu-0.5Cu, under different thermo-mechanical excursions, including isothermal aging at 150 degrees C for various lengths of time and thermo-mechanical cycling between -25 degrees C and 125 degrees C, with an imposed shear strain of similar to 19.6% per cycle, for different number of cycles. During isothermal aging and the thermo-mechanical cycling up to 200 cycles, Ag3Sn precipitates undergo rapid, monotonous coarsening. However, high number of thermo-mechanical cycling, usually between 200 and 600 cycles, causes dissolution and re-precipitation of precipitates, resulting in a fine and even distribution. Also, recrystallization of Sn-grains near precipitate clusters was observed during severe isothermal aging. Such responses are quite unusual for SAC solder alloys. In the regime of usual precipitate coarsening in these SAC alloys, an explicit parameter, which captures the thermo-mechanical history dependence of Ag3Sn particle size, was defined. Brief mechanistic description for the recrystallization of Sn grains during isothermal aging and reprecipitation of the Ag3Sn due to high number of thermo-mechanical cycles are also presented.
Resumo:
We report here the synthesis and characterization of a few phenolate-based ligands bearing tert- amino substituent and their Zn(II) and Cu(II) metal complexes. Three mono/binuclear Zn(II) and Cu(II) complexes Zn(L1)(H2O)].CH3OH.H2O (1) (H (2) L1 = 6,6(')-(((2-dimethylamino)ethylazanediyl)bis(methylene))bis(2, 4-dimethylphenol), Zn-2(L2)(2)] (2) (H (2) L2 = 2,2(')-(((2-dimethylamino)ethyl)azanediyl)bis(methylene)bis(4- methylphenol) and Cu-2(L3)(2).CH2 Cl-2] (3) (H (2) L3 = (6,6(')-(((2-(diethylamino)ethyl)azanediyl)bis(methylene)) bis(methylene))bis(2,4-dimethylphenol) were synthesized by using three symmetrical tetradendate ligands containing N2O2 donor sites. These complexes are characterized by a variety of techniques including; elemental analysis, mass spectrometry, H-1, C-13 NMR spectroscopic and single crystal X-ray analysis. The new complexes have been tested for the phosphotriesterase (PTE) activity with the help of P-31 NMR spectroscopy. The P-31 NMR studies show that mononuclear complex Zn(L1)(H2O)].CH3OH.H2O (1) can hydrolyse the phosphotriester i.e., p-nitrophenyl diphenylphosphate (PNPDPP), more efficiently than the binuclear complexes Zn-2(L2)(2)] (2) and Cu-2(L3)(2).CH2Cl2] (3). The mononuclear Zn(II) complex (1) having one coordinated water molecule exhibits significant PTE activity which may be due to the generation of a Zn(II)-bound hydroxide ion during the hydrolysis reactions in CHES buffer at pH 9.0.
Resumo:
Phase equilibria in the Cu-rich corner of the ternary system Cu-Al-Sn have been re-investigated. Final equilibrium microstructures of 20 ternary alloy compositions near Cu3Al were used to refine the ternary phase diagram. The microstructures were characterized using optical microscopy (OM), x-ray diffraction (XRD), electron probe microanalysis and transmission electron microscopy. Isothermal sections at 853, 845, 833, 818, 808, 803 and 773 K have been composed. Vertical sections have been drawn at 2 and 3 at% Sn, showing beta(1) as a stable phase. Three-phase fields (alpha + beta + beta(1)) and (beta + beta(1) + gamma(1)) result from beta -> alpha + beta(1) eutectoid and beta + gamma(1) -> beta(1) peritectoid reactions forming metastable beta(1) in the binary Cu-Al. With the lowering of temperature from 853 to 818 K, these three-phase fields are shifted to lower Sn concentrations, with simultaneous shrinkage and shifting of (beta + beta(1)) two-phase field. The three-phase field (alpha + beta + gamma(1)) resulting from the binary reaction beta -> alpha + gamma(1) shifts to higher Sn contents, with associated shrinkage of the beta field, with decreasing temperature. With further reduction of temperature, a new ternary invariant reaction beta + beta(1) -> alpha + gamma(1) is observed at similar to 813 K. The beta disappears completely at 803 K, giving rise to the three-phase field (alpha + beta(1) + gamma(1)). Some general guidelines on the role of ternary additions (M) on the stability of the ordered beta(1) phase are obtained by comparing the results of this study with data in the literature on other systems in the systems group Cu-Al-M.
Resumo:
For the purpose of water purification, novel and low-cost adsorbents which are promising replacements for activated carbon are being actively pursued. However, a single-phase material that adsorbs both cationic and anionic species remains elusive. Hence, a low-cost, multiphase adsorbent bed that purifies water containing both anionic and cationic pollutants is a desirable alternative. We choose anionic (Congo red, Orange G) and cationic (methylene blue, malachite green) dyes as model pollutants. These dyes are chosen since they are widely found in effluents from textile, leather, fishery, and pharmaceutical industries, and their carcinogenic, mutagenic, genotoxic, and cytotoxic impact on mammalian cells is well-established. We show that ZnO, (Zn0.24Cu0.76)O and cobalt ferrite based multiphase fixed adsorbent bed efficiently adsorbs model anionic (Congo red, Orange G) and cationic (methylene blue and malachite green) pollutants, and their complex mixtures. All adsorbent phases are synthesized using room-temperature, high-yield (similar to 96-100%), green chemical processes. The nanoadsorbents are characterized by using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analysis, and zeta potential measurements. The constituent nanophases are deliberately chosen to be beyond 50 nm, in order to avoid the nanotoxic size regime of oxides. Adsorption characteristics of each of the phases are examined. Isotherm based analysis shows that adsorption is both spontaneous and highly favorable. zeta potential measurements indicate that electrostatic interactions are the primary driving force for the observed adsorption behavior. The isotherms obtained are best described using a composite Langmuir-Freundlich model. Pseudo-first-order, rapid kinetics is observed (with adsorption rate constants as high as 0.1-0.2 min(-1) in some cases). Film diffusion is shown to be the primary mechanism of adsorption.
Resumo:
Sn-Ag-Cu (SAC) solders are susceptible to appreciable microstructural coarsening during storage or service. This results in evolution of joint properties over time and thereby influences the long-term reliability of microelectronic packages. Accurate reliability prediction of SAC solders requires prediction of microstructural evolution during service. Microstructure evolution in two SAC solder alloys, such as, Sn-3.0Ag-0.5Cu (SAC 305) and Sn-1.0Ag-0.5 Cu (SAC 105), under different thermomechanical excursions, including isothermal aging at 150 degrees C and thermomechanical cycling (TMC) was studied. In general, between 200 and 600 cycles during TMC, recrystallization of the Sn matrix was observed, along with redistribution of Ag3Sn particles because of dissolution and reprecipitation. These latter effects have not been reported before. It was also observed that the Sn grains recrystallized near precipitate clusters in eutectic channels during extended isothermal aging. The relative orientation of Sn grains in proeutectic colonies did not change during isothermal aging.
Resumo:
We investigate the impact of the nucleation law for nucleation on Al-Ti-B inoculant particles, of the motion of inoculant particles and of the motion of grains on the predicted macrosegregation and microstructure in a grain-refined Al-22 wt.% Cu alloy casting. We conduct the study by numerical simulations of a casting experiment in a side-cooled 76×76×254 mm sand mould. Macrosegregation and microstructure formation are studied with a volume-averaged two-phase model accounting for macroscopic heat and solute transport, melt convection, and transport of inoculant particles and equiaxed grains. On the microscopic scale it accounts for nucleation on inoculant particles with a given size distribution (and corresponding activation undercooling distribution)and for the growth of globular solid grains. The growth kinetics is described by accounting for limited solute diffusion in both liquid and solid phases and for convective effects. We show that the consideration of a size distribution of the inoculants has a strong impact on the microstructure(final grain size) prediction. The transport of inoculants significantly increases the microstructure heterogeneities and the grain motion refines the microstructure and reduces the microstructure heterogeneities.
Resumo:
This paper attempts to gain an understanding of the effect of lamellar length scale on the mechanical properties of two-phase metal-intermetallic eutectic structure. We first develop a molecular dynamics model for the in-situ grown eutectic interface followed by a model of deformation of Al-Al2Cu lamellar eutectic. Leveraging the insights obtained from the simulation on the behaviour of dislocations at different length scales of the eutectic, we present and explain the experimental results on Al-Al2Cu eutectic with various different lamellar spacing. The physics behind the mechanism is further quantified with help of atomic level energy model for different length scale as well as different strain. An atomic level energy partitioning of the lamellae and the interface regions reveals that the energy of the lamellae core are accumulated more due to dislocations irrespective of the length-scale. Whereas the energy of the interface is accumulated more due to dislocations when the length-scale is smaller, but the trend is reversed when the length-scale is large beyond a critical size of about 80 nm. (C) 2014 Author(s).
Resumo:
We have synthesized Ag-Cu alloy nanoparticles of four different compositions by using the laser ablation technique with the target under aqueous medium. Following this, we report a morphological transition in the nanoparticles from a normal two-phase microstructure to a structure with random segregation and finally a core shell structure at small sizes as a function of Cu concentration. To illustrate the composition dependence of morphology, we report observations carried out on nanoparticles of two different sizes: similar to 5 and similar to 20 nm. The results could be rationalized through the thermodynamic modeling of free energy of phase mixing and wettability of the alloying phases.
Resumo:
We present comparative analysis of microscopic mechanisms relevant to plastic deformation of the face-centered cubic (FCC) metals Al, Cu, and Ni, through determination of the temperature-dependent free energies of intrinsic and unstable stacking faults along 1 (1) over bar 0] and 1 (2) over bar 1] on the (1 1 1) plane using first-principles density-functional-theory-based calculations. We show that vibrational contribution results in significant decrease in the free energy of barriers and intrinsic stacking faults (ISFs) of Al, Cu, and Ni with temperature, confirming an important role of thermal fluctuations in the stability of stacking faults (SFs) and deformation at elevated temperatures. In contrast to Al and Ni, the vibrational spectrum of the unstable stacking fault (USF1 (2) over bar 1]) in Cu reveals structural instabilities, indicating that the energy barrier (gamma(usf)) along the (1 1 1)1 (2) over bar 1] slip system in Cu, determined by typical first-principles calculations, is an overestimate, and its commonly used interpretation as the energy release rate needed for dislocation nucleation, as proposed by Rice (1992 J. Mech. Phys. Solids 40 239), should be taken with caution.
Resumo:
We describe a group of alloys with ultrahigh strength of about 2 GPa at 700 degrees C and exceptional oxidation resistance to 1100 degrees C. These alloys exploit intermetallic phases with stable oxide forming elements that combine to form fine nanometric scale structures through eutectic transformations in ternary systems. The alloys offer engineering tensile plasticity of about 4% at room temperature though both conventional dislocation mechanisms and twinning in the more complex intermetallic constituent, along with slip lengths that are restricted by the interphase boundaries in the eutectics.
Resumo:
This paper presents a summary of cellular and dendritic morphologies resulting from the upward directional solidification of Al - Ni alloys in a cylindrical crucible. We analysed the coupling of solid-liquid interface morphology with natural and forced convection. The influence of natural convection was first analyzed as a function of growth parameters (solute concentration, growth rate and thermal gradient). In a second step, the influence of axial vibrations on solidification microstructure was investigated by varying vibration parameters (amplitude and frequency). Experimental results were compared to preliminary numerical simulations and a good agreement is found for natural convection. In this study, the critical role of the mushy zone in the interaction between fluid flow and solidification microstructure is pointed out.