965 resultados para Crystal structure


Relevância:

60.00% 60.00%

Publicador:

Resumo:

microwave dielectric properties of ceramics based on Ba(Mgv3Ta(2-2x)t3W,t3Tixt3)O3 is investigated as a function of x. The 15 densification as well as dielectric properties deteriorate with increase in the substitution levels of (Ti 1,3W113)333 + at (Ta213)3.33+ site 16 in Ba(Mg113Ta213)03. The rt is approaching zero between x = 0.1 and 0.15 in Ba(Mg it3Ta(2-2,,.)t3W,it3Ti,Tt3)O3 where quality factor is 17 reasonably good (Qu x f = 80,000-90,000 GHz). The Ba(Mg1,3Ta(2_,013W,13Ti,,13)03 with x = 1.0 has e, = 15.4, rf= -25.1 ppm/ 18 "C, Q„ x f = 35,400 GHz

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The microwave dielectric properties of ZnAl2O4 spinels were investigated and their properties were tailored by adding different mole fractions of Ti02. The samples were synthesized using the mixed oxide rout.e. The phase purity and crystal structure were identified using X-ray diffraction technique. The sintered specimens were characterized in the microwave frequency range (3-13 GHz). The ZnA12O4 ceramics exhibited interesting dielectric properties (dielectric constant (e,.) = 8.5, unloaded quality factor (Q.) = 4590 at 12.27 GHz and temperature coefficient of resonant frequency (Tf) = -79 ppm/°C). Addition of Ti02 into the spinel improved its properties and the Tf approached zero for 0.83ZnAl2O4- 0.17TiO2• This temperature compensated composition has excellent microwave dielectric properties (Cr _ 12.67, Q, = 9950 at 10.075 GHz) which can be exploited for microwave substrate applications

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Schiff base compounds N,N0-bis[(E)-quinoxalin-2-ylmethylidene] propane-1,3-diamine, C21H18N6, (I), and N,N0-bis[(E)- quinoxalin-2-ylmethylidene]butane-1,4-diamine, C22H20N6, (II), crystallize in the monoclinic crystal system. These molecules have crystallographically imposed symmetry. Compound (I) is located on a crystallographic twofold axis and (II) is located on an inversion centre. The molecular conformations of these crystal structures are stabilized by aromatic pye stacking interactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the molecule of the title compound, C20H16N6, the central C—C bond lies on a crystallographic inversion centre. The quinoxalidine ring is nearly planar, with a maximum deviation of 0.021 (2) A ˚ from the mean plane. The crystal structure is stabilized by intermolecular C—H....N interactions, leading to the formation of a layer-like structure, which extends along the a axis

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The asymmetric unit of the title compound, C11H8N4, contains two independent molecules. In the crystal structure, intermolecular N—H.....N hydrogen bonds link molecules into ribbons extended in the [100] direction

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seven bis(ligand) Co(III) complexes {[CoL21] NO3 · H2 O (1), [CoL21] Cl · 2 H2 O (2),[CoL21] ClO4 (3), [CoL22] NO3 (4), [CoL22] Cl · 2 H2 O (5), [CoL23] Br · 2 H2 O (6), [CoL23] ClO4 · H2 O (7)} of three thiosemicarbazone ligands {pyridine-2-carbaldehyde-N(4)-p-methoxyphenyl thiosemicarbazone [HL1], pyridine-2-carbaldehyde-N(4)-2-phenylethyl thiosemicarbazone [HL2] and pyridine-2-carbaldehyde-N(4)-(methyl),N(4)-(phenyl) thiosemicarbazone [HL3]} were synthesized and physico-chemically characterized. All complexes are assigned octahedral geometries on the basis of spectral studies. The ligands deprotonate and coordinate by means of pyridine nitrogen, azomethine nitrogen, and thiolate sulfur atoms. The single crystal X-ray structures of HL3 and two nitrate compounds are discussed. The structural studies corroborate the spectral characterization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel N4O coordination mode offers carbohydrazone ligands as a building block for interesting frameworks through self-assembly. Bridging mode of oxygen of bis(2-benzoylpyridine ketone) carbohydrazone (H2L) with metal centers facilitates the formation of the macrocyclic molecular square [Zn(HL)]4(BF4)4 · 10H2O, offers wide range of applications for carbohydrazones.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present work attempts a systematic examination of the effect of sulphate content on the physico-chemical properties and catalytic activity of sulphated zirconia and iron promoted sulphated zirconia systems. Sulphate content is estimated by EDX analysis. The amount of sulphate incorporated has been found to influence the surface area, crystal structure and the acid strength distribution. Ammonia TPD and adsorption studies using perylene have enabled the determination of surface acidic properties. The results are supported by the thermodesorption studies using pyridine and 2,6-dimethylpyridine. The catalytic activity towards benzoylation reaction has been correlated with the surface acidity of the systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bio-compatible magnetic fluids having high saturation magnetization find immense applications in various biomedical fields. Aqueous ferrofluids of superparamagnetic iron oxide nanoparticles with narrow size distribution, high shelf life and good stability is realized by controlled chemical co-precipitation process. The crystal structure is verified by X-ray diffraction technique. Particle sizes are evaluated by employing Transmission electron microscopy. Room temperature and low-temperature magnetic measurements were carried out with Superconducting Quantum Interference Device. The fluid exhibits good magnetic response even at very high dilution (6.28 mg/cc). This is an advantage for biomedical applications, since only a small amount of iron is to be metabolised by body organs. Magnetic field induced transmission measurements carried out at photon energy of diode laser (670 nm) exhibited excellent linear dichroism. Based on the structural and magnetic measurements, the power loss for the magnetic nanoparticles under study is evaluated over a range of radiofrequencies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chemistry occupies a unique middle position in the scientific arena, between physics and mathematics on the one side and biology, ecology, sociology and economics on the other [1]. Chemistry is the science of matter and of its transformations, and life is its highest expression [2]. According to reductionist thinking biology is reducible into chemistry, chemistry into physics, and ultimately physics into mathematics. Reductionism implies the ease of understanding one level in terms of another.The work presented this thesis comprises synthesis and characterization of suitably substituted thiocarbohydrazone and carbohydrazone ligand building blocks, self-assembled metallosupramolecular square grid complexes as well as some di/multinuclear complexes. The primary aim was the deliberate syntheses of some novel transition metal framework complexes, mainly metallosupramolecular coordination square grids by self-assembly and their physico-chemical characterization. The work presented, however, also include synthesis and characterization of four mononuclear Ni(II) complexes of two thiosemicarbazones, which we carried out as a preliminary and supporting study. Based on the present work we would like to conclude that the carbohydrazones, thiocarbohydrazones and their coordination framework complexes of transition metals are promising systems for wide application in science and technology varied from physics to biotechnology. Novel classes of materials and biologically important potential compounds open up further scope of researches and we hopefully welcome any sort of related research to make this work more valuable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis Entitled INVESTIGATIONS ON THE STRUCTURAL, OPTICAL AND MAGNETIC PROPERTIES OF NANOSTRUCTURED CERIUM OXIDE IN PURE AND DOPED FORMS AND ITS POLYMER NANOCOMPOSITES.Synthesis and processing of nanomatelials and nanostmctures are the essential aspects of nanotechnology. Studies on new physical properties and applications of nanomaterials and nanostructures are possible only when nanostructured materials are made available with desired size, morphology,crystal structure and chemical composition.Recently, several methods have been developed to prepare pure and doped CeO2 powder, including wet chemical synthesis, thermal hydrolysis, flux method, hydrothermal synthesis, gas condensation method, microwave technique etc. In all these, some special reaction conditions, such as high temperature, high pressure, capping agents, expensive or toxic solvents etc. have been involved.Another hi gh-li ght of the present work is room temperature ferromagnetism in cerium oxdie thin films deposited by spray pyrolysis technique.The observation of self trapped exciton mediated PL in ceria nanocrystals is another important outcome of the present study. STE mediated mechanism has been proposed for CeO2 nanocrystals based on the dependence of PL intensity on the annealing temperature. It would be interesting to extent these investigations to the doped forms of cerium oxide and cerium oxide thin films to get deeper Insight into STE mechanism.Due to time constraints detailed investigations could not be canied out on the preparation and properties of free standing films of polymer/ceria nanocomposites. It has been observed that good quality free standing films of PVDF/ceria, PS/C61‘l8, PMMA/ceria can be obtained using solution casting technique. These polymer nanocomposite films show high dielectric constant around 20 and offer prospects of applications as gate electrodes in metal-oxide semiconductor devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we show that the orthorhombic phase of FeSi2 (stable at room temperature) displays a sizable anisotropy in the infrared spectra, with minor effects in the Raman data too. This fact is not trivial at all, since the crystal structure corresponds to a moderate distortion of the fluorite symmetry. Our analysis is carried out on small single crystals grown by flux transport, through polarization-resolved far-infrared reflectivity and Raman measurements. Their interpretation has been obtained by means of the simulated spectra with tight-binding molecular dynamics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the past few decades, a wide spread interest in the structural, optical, electrical and other physical properties of the transition metal dichalcogenide layer compounds has evolved. The members of this family of compounds can be regarded as strongly bonded two dimensional chalcogen-metal~chalcogen layers which are loosely coupled to one another by the weak ven der Waal's forces. Because of this type of bonding, the crystals are easily cleavable along the basal plane and show highly anisotropic properties. This thesis contains the growth and the study of the physical properties of certain tin dichalcogenide crystals (SnS2 and SnSe2). Tin disulphide and tin diselenide crystallize in the hexagonal CdI2 type crystal structure. This structure consists of layers of tin atoms sandwiched between two layers of chalcogen atoms. A tin atom is surrounded by six chalcogen atoms octahedrally.In the layers the atoms are held together by covalent bonding and in between the layers there is van der Waal's bonding.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thermal analysis, powder diffraction, and Raman scattering as a function of the temperature were carried out on K2BeF4. Moreover, the crystal structure was determined at 293 K from powder diffraction. The compound shows a transition from Pna21 to Pnam space group at 921 K with a transition enthalpy of 5 kJ/mol. The transition is assumed to be first order because the compound shows metastability. Structurally and spectroscopically the transition is similar to those observed in (NH4)2SO4, which suggests that the low-temperature phase is ferroelectric. In order to confirm it, the spontaneous polarization has been computed using an ionic model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The character of the electronic ground state of La0.5Ca0.5MnO3 has been addressed with quantum chemical calculations on large embedded clusters. We find a charge ordered state for the crystal structure reported by Radaelli et al. [Phys. Rev. B 55, 3015 (1997)] and Zener polaron formation in the crystal structure with equivalent Mn sites proposed by Daoud-Aladine et al. [Phys. Rev. Lett. 89, 097205 (2002)]. Important O to Mn charge transfer effects are observed for the Zener polaron.