982 resultados para Critical edition
Resumo:
The critical excavation depth of a jointed rock slope is an important problem in rock engineering. This paper studies the critical excavation depth for two idealized jointed rock slopes by employing a face-to-face discrete element method (DEM). The DEM is based on the discontinuity analysis which can consider anisotropic and discontinuous deformations due to joints and their orientations. It uses four lump-points at each surface of rock blocks to describe their interactions. The relationship between the critical excavation depth D-s and the natural slope angle alpha, the joint inclination angle theta as well as the strength parameters of the joints c(r) ,phi(r) is analyzed, and the critical excavation depth obtained with this DEM and the limit equilibrium method (LEM) is compared. Furthermore, effects of joints on the failure modes are compared between DEM simulations and experimental observations. It is found that the DEM predicts a lower critical excavation depth than the LEM if the joint structures in the rock mass are not ignored.
Resumo:
In the present paper, the coordinated measurements of the temperature profile inside the liquid bridge and the boundary variation of Free surface, in addition to other quantities, were obtained in the same time for the half floating zone convection. The results show that the onset of free surface oscillation is earlier than the one of temperature oscillation during the increasing of applied temperature difference, and the critical Marangoni numbers, defined usually by temperature measurement, are larger than the one defined by free surface measurement, and the difference depends on the volume of liquid bridge. These results induce the question, ''How to determine experimentally the critical Marangoni number?'' Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
The influence of vibration on thermocapillary convection and critical Marangoni number in liquid bridge of half floating zone was discussed for the low frequency range 0.4-1.5 Hz and the intermediate frequency range 2.5-15 Hz in our previous papers. This paper extends the study to high frequency range 15-100Hz. This ground based experiment was completed on the deck of an electromagnetic vibration machine. The results of our experiment shows when the frequency of the applied acceleration is high enough, the amplitude of the time varying part of the temperature response is disappear and the shape of the free surface of the liquid bridge exhibits no fluctuations due to inertia. The critical Marangoni number which is defined to describe the transitions from a peroidical convection in response to vibration to an oscillatory convection due to internal instability is nearly the same as the critical Marangoni number for oscillatory flow in the absence of vibration.
Resumo:
In order to develop the ultra-large scale integration(ULSI), low pressure and high density plasma apparatus are required for etching and deposit of thin films. To understand critical parameters such as the pressure, temperature, electrostatic potential and energy distribution of ions impacting on the wafer, it is necessary to understand how these parameters are influenced by the power input and neutral gas pressure. In the present work, a 2-D hybrid electron fluid-particle ion model has been developed to simulate one of the high density plasma sources-an Electron Cyclotron Resonance (ECR) plasma system with various pressures and power inputs in a non-uniform magnetic field. By means of numerical simulation, the energy distributions of argon ion impacting on the wafer are obtained and the plasma density, electron temperature and plasma electrostatic potential are plotted in 3-D. It is concluded that the plasma density depends mainly on both the power input and neutral gas pressure. However, the plasma potential and electron temperature can hardly be affected by the power input, they seem to be primarily dependent on the neutral gas pressure. The comparison shows that the simulation results are qualitatively in good agreement with the experiment measurements.
Resumo:
A half floating zone is fixed on a vibrational deck, which supports a periodical applied acceleration to simulate the effect of g-jitter. This paper deals with the effects of g-jitter on the fluid fields and the critical Marangoni number, which describes the transition from a forced oscillation of thermocapillary convection into an instability oscillatory convection in a liquid bridge of half floating zone with top rod heated. The responses of g-jitter field on the temperature profiles and flow pattern in the liquid bridge were obtained experimentally. The results indicated that the critical Marangoni number decreases with the increasing of g-jitter effect and is slightly smaller for higher frequency of g-jitter with fixed strength of applied gravity.
Resumo:
Leonard Carpenter Panama Canal Collection. Publication: Panama Canal Review Special Edition. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida. This special edition features articles on Panama reprinted from THE PANAMA CANAL REVIEW, which began publication May 5, 1950. These articles, for which there have been many requests for reprints, have been selected from issues published between 1965 and 1973. Review articles may be reprinted without further clearance (69 page document)