907 resultados para Critical analysis
Resumo:
A general transition criterion is proposed in order to locate the core-annular flow pattern in horizontal and vertical oil-water flows. It is based on a rigorous one-dimensional two-fluid model of liquid-liquid two-phase flow and considers the existence of critical interfacial wave numbers related to a non-negligible interfacial tension term to which the linear stability theory still applies. The viscous laminar-laminar flow problem is fully resolved and turbulence effects on the stability are analyzed through experimentally obtained shape factors. The proposed general transition criterion includes in its formulation the inviscid Kelvin-Helmholtz`s discriminator. If a theoretical maximum wavelength is considered as a necessary condition for stability, a stability criterion in terms of the Eotvos number is achieved. Effects of interfacial tension, viscosity ratio, density difference, and shape factors on the stability of core-annular flow are analyzed in detail. The more complete modeling allowed for the analysis of the neutral-stability wave number and the results strongly suggest that the interfacial tension term plays an indispensable role in the correct prediction of the stable region of core-annular flow pattern. The incorporation of a theoretical minimum wavelength into the transition model produced significantly better results. The criterion predictions were compared with recent data from the literature and the agreement is encouraging. (C) 2007 American Institute of Chemical Engineers.
Resumo:
Fault resistance is a critical component of electric power systems operation due to its stochastic nature. If not considered, this parameter may interfere in fault analysis studies. This paper presents an iterative fault analysis algorithm for unbalanced three-phase distribution systems that considers a fault resistance estimate. The proposed algorithm is composed by two sub-routines, namely the fault resistance and the bus impedance. The fault resistance sub-routine, based on local fault records, estimates the fault resistance. The bus impedance sub-routine, based on the previously estimated fault resistance, estimates the system voltages and currents. Numeric simulations on the IEEE 37-bus distribution system demonstrate the algorithm`s robustness and potential for offline applications, providing additional fault information to Distribution Operation Centers and enhancing the system restoration process. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Most post-processors for boundary element (BE) analysis use an auxiliary domain mesh to display domain results, working against the profitable modelling process of a pure boundary discretization. This paper introduces a novel visualization technique which preserves the basic properties of the boundary element methods. The proposed algorithm does not require any domain discretization and is based on the direct and automatic identification of isolines. Another critical aspect of the visualization of domain results in BE analysis is the effort required to evaluate results in interior points. In order to tackle this issue, the present article also provides a comparison between the performance of two different BE formulations (conventional and hybrid). In addition, this paper presents an overview of the most common post-processing and visualization techniques in BE analysis, such as the classical algorithms of scan line and the interpolation over a domain discretization. The results presented herein show that the proposed algorithm offers a very high performance compared with other visualization procedures.
Resumo:
The applicability of a meshfree approximation method, namely the EFG method, on fully geometrically exact analysis of plates is investigated. Based on a unified nonlinear theory of plates, which allows for arbitrarily large rotations and displacements, a Galerkin approximation via MLS functions is settled. A hybrid method of analysis is proposed, where the solution is obtained by the independent approximation of the generalized internal displacement fields and the generalized boundary tractions. A consistent linearization procedure is performed, resulting in a semi-definite generalized tangent stiffness matrix which, for hyperelastic materials and conservative loadings, is always symmetric (even for configurations far from the generalized equilibrium trajectory). Besides the total Lagrangian formulation, an updated version is also presented, which enables the treatment of rotations beyond the parameterization limit. An extension of the arc-length method that includes the generalized domain displacement fields, the generalized boundary tractions and the load parameter in the constraint equation of the hyper-ellipsis is proposed to solve the resulting nonlinear problem. Extending the hybrid-displacement formulation, a multi-region decomposition is proposed to handle complex geometries. A criterium for the classification of the equilibrium`s stability, based on the Bordered-Hessian matrix analysis, is suggested. Several numerical examples are presented, illustrating the effectiveness of the method. Differently from the standard finite element methods (FEM), the resulting solutions are (arbitrary) smooth generalized displacement and stress fields. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In an energy perspective of cost-reduction and configuration-optimization, it becomes necessary to develop and use advanced tools for the analysis, design and improvement of energy conversion systems. In the aeronautical industry, such trend is fundamental since this industry has evolved to design extremely complex aircrafts, with highly integrated systems, requiring more information in order to evaluate the whole system. The aim of this paper is to present an exergy-based analysis as to evaluate the global performance of a typical turbofan engine and its components. The study presents values for exergy efficiency over the whole flight cycle, critical equipment and flight phases considering exergy destruction and estimating internal and exhaust flow costs. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This investigative work is concerned with the flow around a circular cylinder submitted to forced transverse oscillations. The goal is to investigate how the transition to turbulence is initiated in the wake for cases with different Reynolds numbers (Re) and displacement amplitudes (A). For each Re the motion frequency is kept constant, close to the Strouhal number of the flow around a fixed cylinder at the same Re. Stability analysis of two-dimensional periodic flows around a forced-oscillating cylinder is carried out with respect to three-dimensional infinitesimal perturbations. The procedure consists of performing a Floquet type analysis of time-periodic base flows, computed using the spectral/hp element method. With the results of the Floquet calculations, considerations regarding the stability of the system are drawn, and the form of the instability at its onset is obtained. The critical Reynolds number is observed to change with the amplitude of oscillation. With respect to instabilities, unstable modes with the same symmetry as mode A of a fixed cylinder are observed; however, they present different wavelengths. Also, the instabilities observed for the oscillating cylinder are distinctively stronger in the braid shear layers. Other unstable modes similar to mode B are found. Quasi-periodic modes are observed in the 2S wake, and subharmonic mode occurrences are reported in P + S wakes. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We present an analysis of previously published measurements of the London penetration depth of layered organic superconductors. The predictions of the BCS theory of superconductivity are shown to disagree with the measured zero temperature, in plane, London penetration depth by up to two orders of magnitude. We find that fluctuations in the phase of the superconducting order parameter do not determine the superconducting critical temperature as the critical temperature predicted for a Kosterlitz–Thouless transition is more than an order of magnitude greater than is found experimentally for some materials. This places constraints on theories of superconductivity in these materials.
Resumo:
We investigate the effect of the coefficient of the critical nonlinearity for the Neumann problem on the existence of least energy solutions. As a by-product we establish a Sobolev inequality with interior norm.
Resumo:
We consider the semilinear Schrodinger equation -Deltau+V(x)u= K(x) \u \ (2*-2 u) + g(x; u), u is an element of W-1,W-2 (R-N), where N greater than or equal to4, V, K, g are periodic in x(j) for 1 less than or equal toj less than or equal toN, K>0, g is of subcritical growth and 0 is in a gap of the spectrum of -Delta +V. We show that under suitable hypotheses this equation has a solution u not equal 0. In particular, such a solution exists if K equivalent to 1 and g equivalent to 0.
Resumo:
A theoretical analysis is carried out to investigate the pore-fluid pressure gradient and effective vertical-stress gradient distribution in fluid saturated porous rock masses in layered hydrodynamic systems. Three important concepts, namely the critical porosity of a porous medium, the intrinsic Fore-fluid pressure and the intrinsic effective vertical stress of the solid matrix, are presented and discussed. Using some basic scientific principles, we derive analytical solutions and explore the conditions under which either the intrinsic pore-fluid pressure gradient or the intrinsic effective vertical-stress gradient can be maintained at the value of the lithostatic pressure gradient. Even though the intrinsic pore-fluid pressure gradient can be maintained at the value of the lithostatic pressure gradient in a single layer, it is impossible to maintain it at this value in all layers in a layered hydrodynamic system, unless all layers have the same permeability and porosity simultaneously. However, the intrinsic effective vertical-stress gradient of the solid matrix can be maintained at a value close to the lithostatic pressure gradient in all layers in any layered hydrodynamic system within the scope of this study.
Resumo:
Training-needs analysis is critical for defining and procuring effective training systems. However, traditional approaches to training-needs analysis are not suitable for capturing the demands of highly automated and computerized work domains. In this article, we propose that work domain analysis can identify the functional structure of a work domain that must be captured in a training system, so that workers can be trained to deal with unpredictable contingencies that cannot be handled by computer systems. To illustrate this argument, we outline a work domain analysis of a fighter aircraft that defines its functional structure in terms of its training objectives, measures of performance, basic training functions, physical functionality, and physical context. The functional structure or training needs identified by work domain analysis can then be used as a basis for developing functional specifications for training systems, specifically its design objectives, data collection capabilities, scenario generation capabilities, physical functionality, and physical attributes. Finally, work domain analysis also provides a useful framework for evaluating whether a tendered solution fulfills the training needs of a work domain.
Resumo:
Dendritic cells (DC) are considered to be the major cell type responsible for induction of primary immune responses. While they have been shown to play a critical role in eliciting allosensitization via the direct pathway, there is evidence that maturational and/or activational heterogeneity between DC in different donor organs may be crucial to allograft outcome. Despite such an important perceived role for DC, no accurate estimates of their number in commonly transplanted organs have been reported. Therefore, leukocytes and DC were visualized and enumerated in cryostat sections of normal mouse (C57BL/10, B10.BR, C3H) liver, heart, kidney and pancreas by immunohistochemistry (CD45 and MHC class II staining, respectively). Total immunopositive cell number and MHC class II+ cell density (C57BL/10 mice only) were estimated using established morphometric techniques - the fractionator and disector principles, respectively. Liver contained considerably more leukocytes (similar to 5-20 x 10(6)) and DC (similar to 1-3 x 10(6)) than the other organs examined (pancreas: similar to 0.6 x 10(6) and similar to 0.35 x 10(6): heart: similar to 0.8 x 10(6) and similar to 0.4 x 10(6); kidney similar to 1.2 x 10(6) and 0.65 x 10(6), respectively). In liver, DC comprised a lower proportion of all leukocytes (similar to 15-25%) than in the other parenchymal organs examined (similar to 40-60%). Comparatively, DC density in C57BL/10 mice was heart > kidney > pancreas much greater than liver (similar to 6.6 x 10(6), 5 x 10(6), 4.5 x 10(6) and 1.1 x 10(6) cells/cm(3), respectively). When compared to previously published data on allograft survival, the results indicate that the absolute number of MHC class II+ DC present in a donor organ is a poor predictor of graft outcome. Survival of solid organ allografts is more closely related to the density of the donor DC network within the graft. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The analysis of keratin 6 expression is complicated by the presence of multiple isoforms that are expressed constitutively in a number of internal stratified epithelia, in palmoplantar epidermis, and in the companion cell layer of the hair follicle. In addition, keratin 6 expression is inducible in interfollicular epidermis and the outer root sheath of the follicle, in response to wounding stimuli, phorbol esters, or retinoic acid. In order to establish the critical regions involved in the regulation of keratin 6a (the dominant isoform in mice), we generated transgenic mice with two different-sized mouse keratin 6a constructs containing either 1.3 kb or 0.12 kb of 5' flanking sequence linked to the lacZ reporter gene. Both constructs also contained the first intron and the 3' flanking sequence of mouse keratin 6a. Ectopic expression of either transgene was not observed. Double-label immunofluorescence analyses demonstrated expression of the reporter gene in keratin 6 expressing tissues, including the hair follicle, tongue, footpad, and nail bed, showing that both transgenes retained keratinocyte-specific expression. Quantitative analysis of beta -galactosidase activity verified that both the 1.3 and 0.12 kb keratin 6a promoter constructs produced similar levels of the reporter. Notably, both constructs were constitutively expressed in the outer root sheath and interfollicular epidermis in the absence of any activating stimulus, suggesting that they lack the regulatory elements that normally silence transcription in these cells. This study has revealed that a keratin 6a minigene contains critical cis elements that mediate tissue-specific expression and that the elements regulating keratin 6 induction lie distal to the 1.3 kb promoter region.
Resumo:
We conduct a theoretical analysis of steady-state heat transfer problems through mid-crustal vertical cracks with upward throughflow in hydrothermal systems. In particular, we derive analytical solutions for both the far field and near field of the system. In order to investigate the contribution of the forced advection to the total temperature of the system, two concepts, namely the critical Peclet number and the critical permeability of the system, have been presented and discussed in this paper. The analytical solution for the far field of the system indicates that if the pore-fluid pressure gradient in the crust is lithostatic, the critical permeability of the system can be used to determine whether or not the contribution of the forced advection to the total temperature of the system is negligible. Otherwise, the critical Peclet number should be used. For a crust of moderate thickness, the critical permeability is of the order of magnitude of 10(-20) m(2), under which heat conduction is the overwhelming mechanism to transfer heat energy, even though the pore-fluid pressure gradient in the crust is lithostatic. Furthermore, the lower bound analytical solution for the near field of the system demonstrates that the permeable vertical cracks in the middle crust can efficiently transfer heat energy from the lower crust to the upper crust of the Earth. Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
PURPOSE: To determine whether implantation of an aspherical intraocular lens (IOL) results in reduced ocular aberrations and improved contrast sensitivity after cataract surgery without critical reduction of depth of focus. DESIGN: Double-blinded, randomized, prospective study. METHODS: In an intraindividual study of 25 patients with bilateral cataract, an aspherical IOL (Akreos Advanced Optic [AO]; Bausch & Lomb, Inc., Rochester, New York, USA) was implanted in one eye and a spherical IOL (Akreos Fit; Bausch & Lomb, Inc) in the fellow eye. Higher-order aberrations with a 5- and 6-mm pupil were measured with a dynamic retinoscopy aberrometer at 1 and 3 months after surgery. Uncorrected and best-corrected visual acuity and contrast sensitivity under mesopic and photopic conditions also were measured. Distance-corrected near and intermediate visual acuity were studied as a measurement of depth of focus. RESULTS: There was no statistically significant difference between eyes in uncorrected and best-corrected visual acuity at I and 3 months after surgery. There was a statistically significant between-group difference in contrast sensitivity under photopic conditions at 12 cycles per degree and under mesopic conditions at all spatial frequencies. The Akreos AO group obtained statistically significant lower values of higher-order aberrations and spherical aberration with 5- and 6-mm pupils compared with the Akreos Fit group (P < .05). There was no significant difference in distance-corrected near and intermediate visual acuity between both groups. CONCLUSIONS: Aspherical aberration-free Akreos AO IOL induced significantly less higher-order aberrations and spherical aberration than the Akreos Fit. Contrast sensitivity was better under mesopic conditions with the Akreos AO with similar results of depth of focus. (Am J Ophthalmol 2010;149:383-389. (C) 2010 by Elsevier Inc. All rights reserved.)