955 resultados para Cppb Gene Based Assays
Resumo:
Common variants of the transcription factor 7-like 2 (TCF7L2) gene have been found to be associated with type 2 diabetes in different ethnic groups. The Japanese-Brazilian population has one of the highest prevalence rates of diabetes. Therefore, the aim of the present study was to assess whether two single-nucleotide polymorphisms (SNPs) of TCF7L2, rs7903146 and rs12255372, could predict the development of glucose intolerance in Japanese-Brazilians. In a population-based 7-year prospective study, we genotyped 222 individuals (72 males and 150 females, aged 56.2 ± 10.5 years) with normal glucose tolerance at baseline. In the study population, we found that the minor allele frequency was 0.05 for SNP rs7903146 and 0.03 for SNP rs12255372. No significant allele or genotype association with glucose intolerance incidence was found for either SNP. Haplotypes were constructed with these two SNPs and three haplotypes were defined: CG (frequency: 0.94), TT (frequency = 0.027) and TG (frequency = 0.026). None of the haplotypes provided evidence for association with the incidence of glucose intolerance. Despite no associations between incidence of glucose intolerance and SNPs of the TCF7L2 gene in Japanese-Brazilians, we found that carriers of the CT genotype for rs7903146 had significantly lower insulin levels 2 h after a 75-g glucose load than carriers of the CC genotype. In conclusion, in Japanese-Brazilians, a population with a high prevalence of type 2 diabetes, common TCF7L2 variants did not make major contributions to the incidence of glucose tolerance abnormalities.
Resumo:
Male sex determination in humans is controlled by the SRY gene, which encodes a transcriptional regulator containing a conserved high mobility group box domain (HMG-box) required for DNA binding. Mutations in the SRY HMG-box affect protein function, causing sex reversal phenotypes. In the present study, we describe a 19-year-old female presenting 46,XY karyotype with hypogonadism and primary amenorrhea that led to the diagnosis of 46,XY complete gonadal dysgenesis. The novel p.E89K missense mutation in the SRY HMG-box was identified as a de novo mutation. Electrophoretic mobility shift assays showed that p.E89K almost completely abolished SRY DNA-binding activity, suggesting that it is the cause of SRY function impairment. In addition, we report the occurrence of the p.G95R mutation in a 46,XY female with complete gonadal dysgenesis. According to the three-dimensional structure of the human SRY HMG-box, the substitution of the conserved glutamic acid residue by the basic lysine at position 89 introduces an extra positive charge adjacent to and between the positively charged residues R86 and K92, important for stabilizing the HMG-box helix 2 with DNA. Thus, we propose that an electrostatic repulsion caused by the proximity of these positive charges could destabilize the tip of helix 2, abrogating DNA interaction.
Resumo:
Parasites are accountable for driving diversity within immune gene families. We identified and investigated regulatory single nucleotide polymorphisms (SNPs) in the promoter regions of the tumor necrosis factor receptor superfamily member 18 (TNFRSF18) gene by direct sequencing in a group of male Gabonese individuals exposed to a wide array of parasitic diseases such as malaria, filariasis and schistosomiasis. Two new promoter variants were identified in 40 individuals. Both novel variants were heterozygous and were linked to SNP #rs3753344 (C/T), which has been described. One of the SNP variants (ss2080581728) was close to the general transcription factor site, the TATA box. We further validated these new promoter variants for their allelic gene expression using transient transfection assays. One new promoter variant with two base changes (C/T - ss2080581728/rs3753344) displayed an altered expression of the marker gene. Both novel variants remained less active at the non-induced state in comparison to the major allele. The allele frequencies observed in this study were consistent with data for other African populations. The detection and analysis of these human immune gene polymorphisms contribute to a better understanding of the interaction between host-parasite and expression of Treg activity.
Resumo:
The objectives of the present study were to identify the cis-elements of the promoter absolutely required for the efficient rat NHE3 gene transcription and to locate positive and negative regulatory elements in the 5’-flanking sequence (5’FS), which might modulate the gene expression in proximal tubules, and to compare this result to those reported for intestinal cell lines. We analyzed the promoter activity of different 5’FS segments of the rat NHE3 gene, in the OKP renal proximal tubule cell line by measuring the activity of the reporter gene luciferase. Because the segment spanning the first 157 bp of 5’FS was the most active it was studied in more detail by sequential deletions, point mutations, and gel shift assays. The essential elements for gene transcription are in the region -85 to -33, where we can identify consensual binding sites for Sp1 and EGR-1, which are relevant to NHE3 gene basal transcription. Although a low level of transcription is still possible when the first 25 bp of the 5’FS are used as promoter, efficient transcription only occurs with 44 bp of 5’FS. There are negative regulatory elements in the segments spanning -1196 to -889 and -467 to -152, and positive enhancers between -889 and -479 bp of 5’FS. Transcription factors in the OKP cell nuclear extract efficiently bound to DNA elements of rat NHE3 promoter as demonstrated by gel shift assays, suggesting a high level of similarity between transcription factors of both species, including Sp1 and EGR-1.
Resumo:
Major histocompatibility complex class I chain-related A (MICA) is a highly polymorphic gene located within the MHC class I region of the human genome. Expressed as a cell surface glycoprotein, MICA modulates immune surveillance by binding to its cognate receptor on natural killer cells, NKG2D, and its genetic polymorphisms have been recently associated with susceptibility to some infectious diseases. We determined whether MICA polymorphisms were associated with the high rate of Schistosoma parasitic worm infection or severity of disease outcome in the Dongting Lake region of Hunan Province, China. Polymerase chain reaction-sequence specific priming (PCR-SSP) and sequencing-based typing (SBT) were applied for high-resolution allele typing of schistosomiasis cases (N = 103, age range = 36.2-80.5 years, 64 males and 39 females) and healthy controls (N = 141, age range = 28.6-73.3 years, 73 males and 68 females). Fourteen MICA alleles and five short-tandem repeat (STR) alleles were identified among the two populations. Three (MICA*012:01/02, MICA*017 and MICA*027) showed a higher frequency in healthy controls than in schistosomiasis patients, but the difference was not significantly correlated with susceptibility to S. japonicum infection (Pc > 0.05). In contrast, higher MICA*A5 allele frequency was significantly correlated with advanced liver fibrosis (Pc < 0.05). Furthermore, the distribution profile of MICA alleles in this Hunan Han population was significantly different from those published for Korean, Thai, American-Caucasian, and Afro-American populations (P < 0.01), but similar to other Han populations within China (P > 0.05). This study provides the initial evidence that MICA genetic polymorphisms may underlie the severity of liver fibrosis occurring in schistosomiasis patients from the Dongting Lake region.
Resumo:
Nonsyndromic oral clefts (NSOC) are the most common craniofacial birth defects in humans. The etiology of NSOC is complex, involving both genetic and environmental factors. Several genes that play a role in cellular proliferation, differentiation, and apoptosis have been associated with clefting. For example, variations in the homeobox gene family member MSX1, including a CA repeat located within its single intron, may play a role in clefting. The aim of this study was to investigate the association between MSX1CA repeat polymorphism and NSOC in a Southern Brazilian population using a case-parent triad design. We studied 182 nuclear families with NSOC recruited from the Hospital de Clínicas de Porto Alegre in Southern Brazil. The polymorphic region was amplified by the polymerase chain reaction and analyzed by using an automated sequencer. Among the 182 families studied, four different alleles were observed, at frequencies of 0.057 (175 bp), 0.169 (173 bp), 0.096 (171 bp) and 0.67 (169 bp). A transmission disequilibrium test with a family-based association test (FBAT) software program was used for analysis. FBAT analysis showed overtransmission of the 169 bp allele in NSOC (P=0.0005). These results suggest that the CA repeat polymorphism of theMSX1 gene may play a role in risk of NSOC in populations from Southern Brazil.
Resumo:
Overexpression of cytokine-induced apoptosis inhibitor 1 (CIAPIN1) contributes to multidrug resistance (MDR) in breast cancer. This study aimed to evaluate the potential of CIAPIN1 gene silencing by RNA interference (RNAi) as a treatment for drug-resistant breast cancer and to investigate the effect of CIAPIN1 on the drug resistance of breast cancer in vivo. We used lentivirus-vector-based RNAi to knock down CIAPIN1 in nude mice bearing MDR breast cancer tumors and found that lentivirus-vector-mediated silencing of CIAPIN1 could efficiently and significantly inhibit tumor growth when combined with chemotherapy in vivo. Furthermore, Western blot analysis showed that both CIAPIN1 and P-glycoprotein expression were efficiently downregulated, and P53 was upregulated, after RNAi. Therefore, we concluded that lentivirus-vector-mediated RNAi targeting of CIAPIN1 is a potential approach to reverse MDR of breast cancer. In addition, CIAPIN1 may participate in MDR of breast cancer by regulating P-glycoprotein and P53 expression.
Resumo:
Hepatitis E virus (HEV) is classified within the family Hepeviridae, genus Hepevirus. HEV genotype 3 (Gt3) infections are endemic in pigs in Western Europe and in North and South America and cause zoonotic infections in humans. Several serological assays to detect HEV antibodies in pigs have been developed, at first mainly based on HEV genotype 1 (Gt1) antigens. To develop a sensitive HEV Gt3 ELISA, a recombinant baculovirus expression product of HEV Gt3 open reading frame-2 was produced and coated onto polystyrene ELISA plates. After incubation of porcine sera, bound HEV antibodies were detected with anti-porcine anti-IgG and anti-IgM conjugates. For primary estimation of sensitivity and specificity of the assay, sets of sera were used from pigs experimentally infected with HEV Gt3. For further validation of the assay and to set the cutoff value, a batch of 1100 pig sera was used. All pig sera were tested using the developed HEV Gt3 assay and two other serologic assays based on HEV Gt1 antigens. Since there is no gold standard available for HEV antibody testing, further validation and a definite setting of the cutoff of the developed HEV Gt3 assay were performed using a statistical approach based on Bayes' theorem. The developed and validated HEV antibody assay showed effective detection of HEV-specific antibodies. This assay can contribute to an improved detection of HEV antibodies and enable more reliable estimates of the prevalence of HEV Gt3 in swine in different regions.
Resumo:
To investigate signal regulation models of gastric cancer, databases and literature were used to construct the signaling network in humans. Topological characteristics of the network were analyzed by CytoScape. After marking gastric cancer-related genes extracted from the CancerResource, GeneRIF, and COSMIC databases, the FANMOD software was used for the mining of gastric cancer-related motifs in a network with three vertices. The significant motif difference method was adopted to identify significantly different motifs in the normal and cancer states. Finally, we conducted a series of analyses of the significantly different motifs, including gene ontology, function annotation of genes, and model classification. A human signaling network was constructed, with 1643 nodes and 5089 regulating interactions. The network was configured to have the characteristics of other biological networks. There were 57,942 motifs marked with gastric cancer-related genes out of a total of 69,492 motifs, and 264 motifs were selected as significantly different motifs by calculating the significant motif difference (SMD) scores. Genes in significantly different motifs were mainly enriched in functions associated with cancer genesis, such as regulation of cell death, amino acid phosphorylation of proteins, and intracellular signaling cascades. The top five significantly different motifs were mainly cascade and positive feedback types. Almost all genes in the five motifs were cancer related, including EPOR,MAPK14, BCL2L1, KRT18,PTPN6, CASP3, TGFBR2,AR, and CASP7. The development of cancer might be curbed by inhibiting signal transductions upstream and downstream of the selected motifs.
Resumo:
Bovine herpesviruses 1 (BoHV-1) and 5 (BoHV-5) share high genetic and antigenic similarities, but exhibit marked differences in tissue tropism and neurovirulence. The amino-terminal region of glycoprotein C (gC), which is markedly different in each of the viruses, is involved in virus binding to cellular receptors and in interactions with the immune system. This study investigated the genetic and antigenic differences of the 5′ region of the gC (5′ gC) gene (amino-terminal) of South American BoHV-1 (n=19) and BoHV-5 (n=25) isolates. Sequence alignments of 374 nucleotides (104 amino acids) revealed mean similarity levels of 97.3 and 94.2% among BoHV-1 gC (gC1), respectively, 96.8 and 95.6% among BoHV-5 gC (gC5), and 62 and 53.3% between gC1 and gC5. Differences included the absence of 40 amino acid residues (27 encompassing predicted linear epitopes) scattered throughout 5′ gC1 compared to 5′ gC5. Virus neutralizing assays testing BoHV-1 and BoHV-5 antisera against each isolate revealed a high degree of cross-neutralization between the viruses, yet some isolates were neutralized at very low titers by heterologous sera, and a few BoHV-5 isolates reacted weakly with either sera. The virus neutralization differences observed within the same viral species, and more pronounced between BoHV-1 and BoHV-5, likely reflect sequence differences in neutralizing epitopes. These results demonstrate that the 5′ gC region is well conserved within each viral species but is divergent between BoHV-1 and BoHV-5, likely contributing to their biological and antigenic differences.
Resumo:
Association studies of genetic variants and obesity and/or obesity-related risk factors have yielded contradictory results. The aim of the present study was to determine the possible association of five single-nucleotide polymorphisms (SNPs) located in the IGF2, LEPR, POMC, PPARG, and PPARGC1genes with obesity or obesity-related risk phenotypes. This case-control study assessed overweight (n=192) and normal-weight (n=211) children and adolescents. The SNPs were analyzed using minisequencing assays, and variables and genotype distributions between the groups were compared using one-way analysis of variance and Pearson's chi-square or Fisher's exact tests. Logistic regression analysis adjusted for age and gender was used to calculate the odds ratios (ORs) for selected phenotype risks in each group. No difference in SNP distribution was observed between groups. In children, POMC rs28932472(C) was associated with lower diastolic blood pressure (P=0.001), higher low-density lipoprotein (LDL) cholesterol (P=0.014), and higher risk in overweight children of altered total cholesterol (OR=7.35, P=0.006). In adolescents, IGF2 rs680(A) was associated with higher glucose (P=0.012) and higher risk in overweight adolescents for altered insulin (OR=10.08, P=0.005) and homeostasis model of insulin resistance (HOMA-IR) (OR=6.34, P=0.010). PPARGrs1801282(G) conferred a higher risk of altered insulin (OR=12.31, P=0.003), and HOMA-IR (OR=7.47, P=0.005) in overweight adolescents. PARGC1 rs8192678(A) was associated with higher triacylglycerols (P=0.005), and LEPR rs1137101(A) was marginally associated with higher LDL cholesterol (P=0.017). LEPR rs1137101(A) conferred higher risk for altered insulin, and HOMA-IR in overweight adolescents. The associations observed in this population suggested increased risk for cardiovascular diseases and/or type 2 diabetes later in life for individuals carrying these alleles.
Resumo:
A spontaneous fluoroquinolone-resistant mutant (STM1) was isolated from its parent Salmonella enterica serovar Typhi (S. Typhi) clinical isolate. Unlike its parent isolate, this mutant has selective resistance to fluoroquinolones without any change in its sensitivity to various other antibiotics. DNA gyrase assays revealed that the fluoroquinolone resistance phenotype of the STM1 mutant did not result from alteration of the fluoroquinolone sensitivity of the DNA gyrase isolated from it. To study the mechanism of fluoroquinolone resistance, a genomic library from the STM1 mutant was constructed in Escherichia coli DH5α and two recombinant plasmids were obtained. Only one of these plasmids (STM1-A) conferred the selective fluoroquinolone resistance phenotype to E. coli DH5α. The chromosomal insert from STM1-A, digested with EcoRI and HindIII restriction endonucleases, produced two DNA fragments and these were cloned separately into pUC19 thereby generating two new plasmids, STM1-A1 and STM1-A2. Only STM1-A1 conferred the selective fluoroquinolone resistance phenotype to E. coli DH5α. Sequence and subcloning analyses of STM1-A1 showed the presence of an intact RecA open reading frame. Unlike that of the wild-type E. coli DH5α, protein analysis of a crude STM1-A1 extract showed overexpression of a 40 kDa protein. Western blotting confirmed the 40 kDa protein band to be RecA. When a RecA PCR product was cloned into pGEM-T and introduced into E. coli DH5α, the STM1-A11 subclone retained fluoroquinolone resistance. These results suggest that overexpression of RecA causes selective fluoroquinolone resistance in E. coli DH5α.
Resumo:
Response Surface Methodology (RSM) was applied to evaluate the chromatic features and sensory acceptance of emulsions that combine Soy Protein (SP) and red Guava Juice (GJ). The parameters analyzed were: instrumental color based on the coordinates a* (redness), b* (yellowness), L* (lightness), C* (chromaticity), h* (hue angle), visual color, acceptance, and appearance. The analyses of the results showed that GJ was responsible for the high measured values of red color, hue angle, chromaticity, acceptance, and visual color, whereas SP was the variable that increased the yellowness intensity of the assays. The redness (R²adj = 74.86%, p < 0.01) and hue angle (R²adj = 80.96%, p < 0.01) were related to the independent variables by linear models, while the sensory data (color and acceptance) could not be modeled due to a high variability. The models of yellowness, lightness, and chromaticity did not present lack of fit but presented adjusted determination coefficients bellow 70%. Notwithstanding, the linear correlations between sensory and instrumental data were not significant (p > 0.05) and low Pearson coefficients were obtained. The results showed that RSM is a useful tool to develop soy-based emulsions and model some chromatic features of guava-based emulsions through RSM.
Resumo:
This study aimed to compare Lactobacillus rhamnosus growth in MRS (de Man, Rogosa and Sharpe) broth and a culture medium containing milk whey (MMW) and to evaluate aflatoxin B1 (AFB1) adsorption capacity by bacterial cells produced in both culture media. L. rhamnosus cells were cultivated in MRS broth and MMW (37 °C, 24 hours), and bacterial cell concentration was determined spectrophotometrically at 600 nm. AFB1 (1 µg/ml) adsorption assays were conducted using 1 x 10(10) non-viable L. rhamnosus cells (121 °C, 15 minutes) at pHs 3.0 and 6.0 and contact time of 60 minutes. AFB1 quantification was performed by High Performance Liquid Chromatography. Bacterial cell concentration in MMW was higher (9.84 log CFU/ml) than that in MRS broth (9.63 log CFU/ml). There were no significant differences between AFB1 binding results at the same pH value (3.0 or 6.0) for the cells cultivated in MRS broth (46.0% and 35.8%, respectively) and in MMW (43.7% and 25.8%, respectively), showing that MMW can adequately replace the MRS broth. Therefore, it can be concluded that the use of L. rhamnosus cells cultivated in MMW offers advantages such as reduction in large scale production costs, improvement of environmental sustainability, and being a practicable alternative for decontamination of food products susceptible to aflatoxin contamination.
Resumo:
The advancement of science and technology makes it clear that no single perspective is any longer sufficient to describe the true nature of any phenomenon. That is why the interdisciplinary research is gaining more attention overtime. An excellent example of this type of research is natural computing which stands on the borderline between biology and computer science. The contribution of research done in natural computing is twofold: on one hand, it sheds light into how nature works and how it processes information and, on the other hand, it provides some guidelines on how to design bio-inspired technologies. The first direction in this thesis focuses on a nature-inspired process called gene assembly in ciliates. The second one studies reaction systems, as a modeling framework with its rationale built upon the biochemical interactions happening within a cell. The process of gene assembly in ciliates has attracted a lot of attention as a research topic in the past 15 years. Two main modelling frameworks have been initially proposed in the end of 1990s to capture ciliates’ gene assembly process, namely the intermolecular model and the intramolecular model. They were followed by other model proposals such as templatebased assembly and DNA rearrangement pathways recombination models. In this thesis we are interested in a variation of the intramolecular model called simple gene assembly model, which focuses on the simplest possible folds in the assembly process. We propose a new framework called directed overlap-inclusion (DOI) graphs to overcome the limitations that previously introduced models faced in capturing all the combinatorial details of the simple gene assembly process. We investigate a number of combinatorial properties of these graphs, including a necessary property in terms of forbidden induced subgraphs. We also introduce DOI graph-based rewriting rules that capture all the operations of the simple gene assembly model and prove that they are equivalent to the string-based formalization of the model. Reaction systems (RS) is another nature-inspired modeling framework that is studied in this thesis. Reaction systems’ rationale is based upon two main regulation mechanisms, facilitation and inhibition, which control the interactions between biochemical reactions. Reaction systems is a complementary modeling framework to traditional quantitative frameworks, focusing on explicit cause-effect relationships between reactions. The explicit formulation of facilitation and inhibition mechanisms behind reactions, as well as the focus on interactions between reactions (rather than dynamics of concentrations) makes their applicability potentially wide and useful beyond biological case studies. In this thesis, we construct a reaction system model corresponding to the heat shock response mechanism based on a novel concept of dominance graph that captures the competition on resources in the ODE model. We also introduce for RS various concepts inspired by biology, e.g., mass conservation, steady state, periodicity, etc., to do model checking of the reaction systems based models. We prove that the complexity of the decision problems related to these properties varies from P to NP- and coNP-complete to PSPACE-complete. We further focus on the mass conservation relation in an RS and introduce the conservation dependency graph to capture the relation between the species and also propose an algorithm to list the conserved sets of a given reaction system.