911 resultados para Cosmic-ray interactions with the Earth


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The morphology of asphalt mixture can be defined as a set of parameters describing the geometrical characteristics of its constituent materials, their relative proportions as well as spatial arrangement in the mixture. The present study is carried out to investigate the effect of the morphology on its meso- and macro-mechanical response. An analysis approach is used for the meso-structural characterisation based on the X-ray computed tomography (CT) data. Image processing techniques are used to systematically vary the internal structure to obtain different morphology structures. A morphology framework is used to characterise the average mastic coating thickness around the main load carrying structure in the structures. The uniaxial tension simulation shows that the mixtures with the lowest coating thickness exhibit better inter-particle interaction with more continuous load distribution chains between adjacent aggregate particles, less stress concentrations and less strain localisation in the mastic phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphatase and tensin homolog (PTEN) is involved in a number of different cellular processes including metabolism, apoptosis, cell proliferation and survival. It is a redox-sensitive dual-specificity protein phosphatase that acts as a tumor suppressor by negatively regulating the PI3K/Akt pathway. While direct evidence of redox regulation of PTEN downstream signaling has been reported, the effect of PTEN redox status on its protein-protein interactions is poorly understood. PTEN-GST in its reduced and a DTT-reversible H2O2-oxidized form was immobilized on a glutathione-sepharose support and incubated with cell lysate to capture interacting proteins. Captured proteins were analyzed by LC-MSMS and comparatively quantified using label-free methods. 97 Potential protein interactors were identified, including a significant number that are novel. The abundance of fourteen interactors was found to vary significantly with the redox status of PTEN. Altered binding to PTEN was confirmed by affinity pull-down and Western blotting for Prdx1, Trx, and Anxa2, while DDB1 was validated as a novel interactor with unaltered binding. These results suggest that the redox status of PTEN causes a functional variation in the PTEN interactome. The resin capture method developed had distinct advantages in that the redox status of PTEN could be directly controlled and measured.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrology and a history of oligotrophy unite the massive landscape comprising freshwater marsh in Everglades National Park. With restoration of water flow to the Everglades, phosphorus (P) enrichment, both from agricultural and domestic sources, may increase nutrient load to the marsh ecosystem. Previous research of P enrichment of Everglades soil, periphyton, and macrophytes revealed each of these ecosystem components responds to increased P loads with increased production and nutrient content. Interactions among these ecosystem components and how P affects the magnitude and direction of interaction are poorly understood and are the focus of my research. Here I present results of a two-year, two-factor experiment of P enrichment and manipulation in Everglades National Park. I quantified biomass, nutrient content, and production for periphyton and macrophyes and found macrophyte removal drives change in nutrient content, biomass, and production of periphyton. Periphyton removal did not appear to control macrophyte dynamics. Soil chemical and physical characteristics were explained primarily by site differences but there was an enrichment effect of soil porewater nitrite + nitrate, nitrite, and soluble reactive phosphorus. Flocculent materials production and depth were significantly affected by macrophyte removal where depth and production were significantly greater with the no macrophyte treatment. The dominant macrophyte of the marsh, Eleocharis cellulosa, increased more in the unenriched marsh than in the enriched marsh. The combination of these findings suggests that dynamics in floc and periphyton are controlled primarily by the presence of periphyton and that this relationship is significantly affected by low-level P enrichment. These results may be valuable in their application to both managers and policy makers who are involved in the Everglades restoration process. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A brackish water ecotone of coastal bays and lakes, mangrove forests, salt marshes, tidal creeks, and upland hammocks separates Florida Bay, Biscayne Bay, and the Gulf of Mexico from the freshwater Everglades. The Everglades mangrove estuaries are characterized by salinity gradients that vary spatially with topography and vary seasonally and inter-annually with rainfall, tide, and freshwater flow from the Everglades. Because of their location at the lower end of the Everglades drainage basin, Everglades mangrove estuaries have been affected by upstream water management practices that have altered the freshwater heads and flows and that affect salinity gradients. Additionally, interannual variation in precipitation patterns, particularly those caused to El Nin˜o events, control freshwater inputs and salinity dynamics in these estuaries. Two major external drivers on this system are water management activities and global climate change. These drivers lead to two major ecosystem stressors: reduced freshwater flow volume and duration, and sea-level rise. Major ecological attributes include mangrove forest production, soil accretion, and resilience; coastal lake submerged aquatic vegetation; resident mangrove fish populations; wood stork (Mycteria americana) and roseate spoonbill (Platelea ajaja) nesting colonies; and estuarine crocodilian populations. Causal linkages between stressors and attributes include coastal transgression, hydroperiods, salinity gradients, and the ‘‘white zone’’ freshwater/estuarine interface. The functional estuary and its ecological attributes, as influenced by sea level and freshwater flow, must be viewed as spatially dynamic, with a possible near-term balancing of transgression but ultimately a long-term continuation of inland movement. Regardless of the spatio-temporal timing of this transgression, a salinity gradient supportive of ecologically functional Everglades mangrove estuaries will be required to maintain the integrity of the South Florida ecosystem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. The roles of nutrients, disturbance and predation in regulating consumer densities have long been of interest, but their indirect effects have rarely been quantified in wetland ecosystems. The Florida Everglades contains gradients of hydrological disturbance (marsh drying) and nutrient enrichment (phosphorus), often correlated with densities of macroinvertebrate infauna (macroinvertebrates inhabiting periphyton), small fish and larger invertebrates, such as snails, grass shrimp, insects and crayfish. However, most causal relationships have yet to be quantified. 2.  We sampled periphyton (content and community structure) and consumer (small omnivores, carnivores and herbivores, and infaunal macroinvertebrates inhabiting periphyton) density at 28 sites spanning a range of hydrological and nutrient conditions and compared our data to seven a priori structural equation models. 3.  The best model included bottom-up and top-down effects among trophic groups and supported top-down control of infauna by omnivores and predators that cascaded to periphyton biomass. The next best model included bottom-up paths only and allowed direct effects of periphyton on omnivore density. Both models suggested a positive relationship between small herbivores and small omnivores, indicating that predation was unable to limit herbivore numbers. Total effects of time following flooding were negative for all three consumer groups even when both preferred models suggested positive direct effects for some groups. Total effects of nutrient levels (phosphorus) were positive for consumers and generally larger than those of hydrological disturbance and were mediated by changes in periphyton content. 4.  Our findings provide quantitative support for indirect effects of nutrient enrichment on consumers, and the importance of both algal community structure and periphyton biomass to Everglades food webs. Evidence for top-down control of infauna by omnivores was noted, though without substantially greater support than a competing bottom-up-only model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microelectronic systems are multi-material, multi-layer structures, fabricated and exposed to environmental stresses over a wide range of temperatures. Thermal and residual stresses created by thermal mismatches in films and interconnections are a major cause of failure in microelectronic devices. Due to new device materials, increasing die size and the introduction of new materials for enhanced thermal management, differences in thermal expansions of various packaging materials have become exceedingly important and can no longer be neglected. X-ray diffraction is an analytical method using a monochromatic characteristic X-ray beam to characterize the crystal structure of various materials, by measuring the distances between planes in atomic crystalline lattice structures. As a material is strained, this interplanar spacing is correspondingly altered, and this microscopic strain is used to determine the macroscopic strain. This thesis investigates and describes the theory and implementation of X-ray diffraction in the measurement of residual thermal strains. The design of a computer controlled stress attachment stage fully compatible with an Anton Paar heat stage will be detailed. The stress determined by the diffraction method will be compared with bimetallic strip theory and finite element models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims. We report results of an X-ray study of the supernova remnant (SNR) G344.7-0.1 and the point-like X-ray source located at the geometrical center of the SNR radio structure. Methods. The morphology and spectral properties of the remnant and the central X-ray point-like source were studied using data from the XMM-Newton and Chandra satellites. Archival radio data and infrared Spitzer observations at 8 and 24 mu m were used to compare and study its multi-band properties at different wavelengths. Results. The XMM-Newton and Chandra observations reveal that the overall X-ray emission of G344.7-0.1 is extended and correlates very well with regions of bright radio and infrared emission. The X-ray spectrum is dominated by prominent atomic emission lines. These characteristics suggest that the X-ray emission originated in a thin thermal plasma, whose radiation is represented well by a plane-parallel shock plasma model (PSHOCK). Our study favors the scenario in which G344.7-0.1 is a 6 x 10^3 year old SNR expanding in a medium with a high density gradient and is most likely encountering a molecular cloud on the western side. In addition, we report the discovery of a soft point-like X-ray source located at the geometrical center of the radio SNR structure. The object presents some characteristics of the so-called compact central objects (CCO). However, its neutral hydrogen absorption column (N_H) is inconsistent with that of the SNR. Coincident with the position of the source, we found infrared and optical objects with typical early-K star characteristics. The X-ray source may be a foreground star or the CCO associated with the SNR. If this latter possibility were confirmed, the point-like source would be the farthest CCO detected so far and the eighth member of the new population of isolated and weakly magnetized neutron stars.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the results of searches for dipolar-type anisotropies in different energy ranges above 2.5 x 10(17) eV with the surface detector array of the Pierre Auger Observatory, reporting on both the phase and the amplitude measurements of the first harmonic modulation in the right-ascension distribution. Upper limits on the amplitudes are obtained, which provide the most stringent bounds at present, being below 2% at 99% C.L. for EeV energies. We also compare our results to those of previous experiments as well as with some theoretical expectations. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All organisms live in complex habitats that shape the course of their evolution by altering the phenotype expressed by a given genotype (a phenomenon known as phenotypic plasticity) and simultaneously by determining the evolutionary fitness of that phenotype. In some cases, phenotypic evolution may alter the environment experienced by future generations. This dissertation describes how genetic and environmental variation act synergistically to affect the evolution of glucosinolate defensive chemistry and flowering time in Boechera stricta, a wild perennial herb. I focus particularly on plant-associated microbes as a part of the plant’s environment that may alter trait evolution and in turn be affected by the evolution of those traits. In the first chapter I measure glucosinolate production and reproductive fitness of over 1,500 plants grown in common gardens in four diverse natural habitats, to describe how patterns of plasticity and natural selection intersect and may influence glucosinolate evolution. I detected extensive genetic variation for glucosinolate plasticity and determined that plasticity may aid colonization of new habitats by moving phenotypes in the same direction as natural selection. In the second chapter I conduct a greenhouse experiment to test whether naturally-occurring soil microbial communities contributed to the differences in phenotype and selection that I observed in the field experiment. I found that soil microbes cause plasticity of flowering time but not glucosinolate production, and that they may contribute to natural selection on both traits; thus, non-pathogenic plant-associated microbes are an environmental feature that could shape plant evolution. In the third chapter, I combine a multi-year, multi-habitat field experiment with high-throughput amplicon sequencing to determine whether B. stricta-associated microbial communities are shaped by plant genetic variation. I found that plant genotype predicts the diversity and composition of leaf-dwelling bacterial communities, but not root-associated bacterial communities. Furthermore, patterns of host genetic control over associated bacteria were largely site-dependent, indicating an important role for genotype-by-environment interactions in microbiome assembly. Together, my results suggest that soil microbes influence the evolution of plant functional traits and, because they are sensitive to plant genetic variation, this trait evolution may alter the microbial neighborhood of future B. stricta generations. Complex patterns of plasticity, selection, and symbiosis in natural habitats may impact the evolution of glucosinolate profiles in Boechera stricta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Valuable genetic variation for bean breeding programs is held within the common bean secondary gene pool which consists of Phaseolus albescens, P. coccineus, P. costaricensis, and P. dumosus. However, the use of close relatives for bean improvement is limited due to the lack of knowledge about genetic variation and genetic plasticity of many of these species. Characterisation and analysis of the genetic diversity is necessary among beans' wild relatives; in addition, conflicting phylogenies and relationships need to be understood and a hypothesis of a hybrid origin of P. dumosus needs to be tested. This thesis research was orientated to generate information about the patterns of relationships among the common bean secondary gene pool, with particular focus on the species Phaseolus dumosus. This species displays a set of characteristics of agronomic interest, not only for the direct improvement of common bean but also as a source of valuable genes for adaptation to climate change. Here I undertake the first comprehensive study of the genetic diversity of P. dumosus as ascertained from both nuclear and chloroplast genome markers. A germplasm collection of the ancestral forms of P. dumosus together with wild, landrace and cultivar representatives of all other species of the common bean secondary gene pool, were used to analyse genetic diversity, phylogenetic relationships and structure of P. dumosus. Data on molecular variation was generated from sequences of cpDNA loci accD-psaI spacer, trnT-trnL spacer, trnL intron and rps14-psaB spacer and from the nrDNA the ITS region. A whole genome DArT array was developed and used for the genotyping of P. dumosus and its closes relatives. 4208 polymorphic markers were generated in the DArT array and from those, 742 markers presented a call rate >95% and zero discordance. DArT markers revealed a moderate genetic polymorphism among P. dumosus samples (13% of polymorphic loci), while P. coccineus presented the highest level of polymorphism (88% of polymorphic loci). At the cpDNA one ancestral haplotype was detected among all samples of all species in the secondary genepool. The ITS region of P. dumosus revealed high homogeneity and polymorphism bias to P. coccineus genome. Phylogenetic reconstructions made with Maximum likelihood and Bayesian methods confirmed previously reported discrepancies among the nuclear and chloroplast genomes of P. dumosus. The outline of relationships by hybridization networks displayed a considerable number of interactions within and between species. This research provides compelling evidence that P. dumosus arose from hybridisation between P. vulgaris and P. coccineus and confirms that P. costaricensis has likely been involved in the genesis or backcrossing events (or both) in the history of P. dumosus. The classification of the specie P. persistentus was analysed based on cpDNA and ITS sequences, the results found this species to be highly related to P. vulgaris but not too similar to P. leptostachyus as previously proposed. This research demonstrates that wild types of the secondary genepool carry a significant genetic variation which makes this a valuable genetic resource for common bean improvement. The DArT array generated in this research is a valuable resource for breeding programs since it has the potential to be used in several approaches including genotyping, discovery of novel traits, mapping and marker-trait associations. Efforts should be made to search for potential populations of P. persistentus and to increase the collection of new populations of P. dumosus, P. albescens and P. costaricensis that may provide valuable traits for introgression into common bean and other Phaseolus crops.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The early Pliocene warm phase was characterized by high sea surface temperatures and a deep thermocline in the eastern equatorial Pacific. A new hypothesis suggests that the progressive closure of the Panamanian seaway contributed substantially to the termination of this zonally symmetric state in the equatorial Pacific. According to this hypothesis, intensification of the Atlantic meridional overturning circulation (AMOC) - induced by the closure of the gateway - was the principal cause of equatorial Pacific thermocline shoaling during the Pliocene. In this study, twelve Panama seaway sensitivity experiments from eight ocean/climate models of different complexity are analyzed to examine the effect of an open gateway on AMOC strength and thermocline depth. All models show an eastward Panamanian net throughflow, leading to a reduction in AMOC strength compared to the corresponding closed-Panama case. In those models that do not include a dynamic atmosphere, deepening of the equatorial Pacific thermocline appears to scale almost linearly with the throughflow-induced reduction in AMOC strength. Models with dynamic atmosphere do not follow this simple relation. There are indications that in four out of five models equatorial wind-stress anomalies amplify the tropical Pacific thermocline deepening. In summary, the models provide strong support for the hypothesized relationship between Panama closure and equatorial Pacific thermocline shoaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Model for Prediction Across Scales (MPAS) is a novel set of Earth system simulation components and consists of an atmospheric model, an ocean model and a land-ice model. Its distinct features are the use of unstructured Voronoi meshes and C-grid discretisation to address shortcomings of global models on regular grids and the use of limited area models nested in a forcing data set, with respect to parallel scalability, numerical accuracy and physical consistency. This concept allows one to include the feedback of regional land use information on weather and climate at local and global scales in a consistent way, which is impossible to achieve with traditional limited area modelling approaches. Here, we present an in-depth evaluation of MPAS with regards to technical aspects of performing model runs and scalability for three medium-size meshes on four different high-performance computing (HPC) sites with different architectures and compilers. We uncover model limitations and identify new aspects for the model optimisation that are introduced by the use of unstructured Voronoi meshes. We further demonstrate the model performance of MPAS in terms of its capability to reproduce the dynamics of the West African monsoon (WAM) and its associated precipitation in a pilot study. Constrained by available computational resources, we compare 11-month runs for two meshes with observations and a reference simulation from the Weather Research and Forecasting (WRF) model. We show that MPAS can reproduce the atmospheric dynamics on global and local scales in this experiment, but identify a precipitation excess for the West African region. Finally, we conduct extreme scaling tests on a global 3?km mesh with more than 65 million horizontal grid cells on up to half a million cores. We discuss necessary modifications of the model code to improve its parallel performance in general and specific to the HPC environment. We confirm good scaling (70?% parallel efficiency or better) of the MPAS model and provide numbers on the computational requirements for experiments with the 3?km mesh. In doing so, we show that global, convection-resolving atmospheric simulations with MPAS are within reach of current and next generations of high-end computing facilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To qualitatively explore the communication between healthcare professionals and oncology patients based on the perception of patients undergoing chemotherapy.Method: Qualitative and exploratory design. Participants were 14 adult patients undergoing chemotherapy at different stages of the disease. A socio-demographic and clinical data form was utilized along with semi-structured interviews. The interviews were audio-recorded, transcribed and content analysis was performed. Two independent judges evaluated the interview content in regards to emerging categories and obtained a Kappa index of 0.834.Results: Three categories emerged from the data: 1) Technical communication without emotional support, in which the information provided is composed of strictly technical information regarding the diagnosis, treatment and/or prognosis; 2) Technical communication, in which the information provided is oriented towards the technical aspects of the patient’s physical condition, while also providing psychological support for the patients’ subjective needs; and 3) Insufficient technical communication, win which there are gaps in the information provided causing confusion and suffering to the patient.Conclusions: Communication with emotional support contributes to greater satisfaction of chemotherapy patients. Practical implications: the results provide elements for the training of healthcare professionals regarding the importance of the emotional support that can be offered to cancer patients during their treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kelp forests dominate temperate and polar rocky coastlines and represent critical marine habitats because they support elevated rates of primary and secondary production and high biodiversity. A major threat to the stability of these ecosystems is the proliferation of non-native species, such as the Japanese kelp Undariapinnatifida (‘Wakame’), which has recently colonised natural habitats in the UK. We quantified the abundance and biomass of U. pinnatifida on a natural rocky reef habitat over 10 months to make comparisons with three native canopy-forming brown algae (Laminaria ochroleuca, Saccharina latissima, and Saccorhiza polyschides). We also examined the biogenic habitat structure provided by, and epibiotic assemblages associated with, U. pinnatifida in comparison to native macroalgae. Surveys conducted within the Plymouth Sound Special Area of Conservation indicated that U. pinnatifida is now a dominant and conspicuous member of kelp-dominated communities on natural substrata. Crucially, U. pinnatifida supported a structurally dissimilar and less diverse epibiotic assemblage than the native perennial kelp species. However, U. pinnatifida-associated assemblages were similar to those associated with Saccorhiza polyschides, which has a similar life history and growth strategy. Our results suggest that a shift towards U. pinnatifida dominated reefs could result in impoverished epibiotic assemblages and lower local biodiversity, although this could be offset, to some extent, by the climate-driven proliferation of L. ochroleuca at the poleward range edge, which provides complex biogenic habitat and harbours relatively high biodiversity. Clearly, greater understanding of the long-term dynamics and competitive interactions between these habitat-forming species is needed to accurately predict future biodiversity patterns.