967 resultados para Cosmic Microwave


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: The role of bacteria in meibomian gland dysfunction is unclear, yet contamination of compresses used as treatment may exacerbate this condition. This study therefore determined the effect of heating on bacteria on two forms of compress. METHODS: Cotton flannels and MGDRx EyeBags (eyebags) were inoculated by adding experimental inoculum (Staphylococcus aureus, Streptococcus pyogenes, Pseudomonas aeruginosa; one species for each set of 3 eyebags and flannels). One of each were then randomised in to 3 groups: no heating (control); therapeutic (47.4±0.7°C); or sanitisation (68±1.1°C). After treatment, bacteria cell numbers were calculated. The experiment was repeated in triplicate. RESULTS: There was a statistically significant difference between each treatment with the eyebag for S. aureus (control=7.15±0.11logC/ml, therapeutic heating=5.24±0.59logC/ml, sanitisation heating=3.48±1.43logC/ml; P<0.001) and S. pyogenes (7.36±0.13, 5.73±0.26, 4.75±0.54; P<0.001). P. aeruginosa also showed a significant reduction (P<0.001) from control (6.39±0.34) to therapeutic (0.33±0.26) and sanitisation (0.33±0.21), but the latter were similar (P=1.000). For the flannels, there was significant difference between each treatment for S. aureus (6.89±0.46, 3.96±1.76, 0.42±0.90; P<0.001). For S. pyogenes, there was a significant reduction (P<0.001) from control (7.51±0.10) to therapeutic (5.91±0.62) and sanitisation (5.18±0.8), but the latter were similar (P=0.07). For P. aeruginosa, there was a significant difference (P<0.001) from control (7.15±0.36) to sanitisation (5.83±0.44); but not to therapeutic (6.84±0.31) temperatures (P=0.07). CONCLUSIONS: Therapeutic heating produces a significant reduction in bacteria on the eyebags, but only sanitisation heating appears effective for flannels. However, patients should be advised to heat the eyebag to sanitisation temperatures on initial use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microwave photonic responses based on the superstructure fibre Bragg gratings with designed apodisation profile are investigated. The rejection level of more than 60 dB for a bandpass filtering response is demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microwave photonic filtering is realised using a superstructured fibre Bragg grating. The time delay of the optical taps is precisely controlled by the grating characteristics and fibre dispersion. A bandpass response with a rejection level of >45 dB is achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a microwave photonic filter using superstructured fiber Bragg grating and dispersive fiber is investigated. A theoretical model to describe the transfer function of the filter taking into consideration the spectral width of light source is established. Experiments are carried out to verify the theoretical analysis. Both theoretical and experimental results indicate that due to chromatic dispersion the source spectral width introduces an additional power penalty to the microwave photonic response of the filter. © 2005 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical illumination of a microstrip gap on a thick semiconductor substrate creates an inhomogeneous electron-hole plasma in the gap region. This allows the study of the propagation mechanism through the plasma region. This paper uses a multilayer plasma model to explain the origin of high losses in such structures. Measured results are shown up to 50 GHz and show good agreement with the simulated multilayer model. The model also allows the estimation of certain key parameters of the plasma, such as carrier density and diffusion length, which are difficult to measure by direct means. The detailed model validation performed here will enable the design of more complex microwave structures based on this architecture. While this paper focuses on monocrystalline silicon as the substrate, the model is easily adaptable to other semiconductor materials such as GaAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we analyze the sensitivities of coherent optical receivers and microwave receivers. We derive theoretical limits of signal-to-noise ratio and bit error rate. By applying a generic approach to a broad range of receivers, we can compare their performance directly. Other publications have considered some of these receivers. However, their diverse nature obscures the big picture. Using our results as a unifying platform, previous publications can be compared and discrepancies between them identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The frequency dependent radio frequency power degradation in direct modulated microwave photonic systems employing uniform period fiber Bragg gratings (FBG) as reflective elements in investigated. Results show implications in terms of the available radio frequency bandwidth and the stability requirements for the FBG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A solar power satellite is paid attention to as a clean, inexhaustible large- scale base-load power supply. The following technology related to beam control is used: A pilot signal is sent from the power receiving site and after direction of arrival estimation the beam is directed back to the earth by same direction. A novel direction-finding algorithm based on linear prediction technique for exploiting cyclostationary statistical information (spatial and temporal) is explored. Many modulated communication signals exhibit a cyclostationarity (or periodic correlation) property, corresponding to the underlying periodicity arising from carrier frequencies or baud rates. The problem was solved by using both cyclic second-order statistics and cyclic higher-order statistics. By evaluating the corresponding cyclic statistics of the received data at certain cycle frequencies, we can extract the cyclic correlations of only signals with the same cycle frequency and null out the cyclic correlations of stationary additive noise and all other co-channel interferences with different cycle frequencies. Thus, the signal detection capability can be significantly improved. The proposed algorithms employ cyclic higher-order statistics of the array output and suppress additive Gaussian noise of unknown spectral content, even when the noise shares common cycle frequencies with the non-Gaussian signals of interest. The proposed method completely exploits temporal information (multiple lag ), and also can correctly estimate direction of arrival of desired signals by suppressing undesired signals. Our approach was generalized over direction of arrival estimation of cyclostationary coherent signals. In this paper, we propose a new approach for exploiting cyclostationarity that seems to be more advanced in comparison with the other existing direction finding algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used microwave plasma enhanced chemical vapor deposition (MPECVD) to carbonize an electrospun polyacrylonitrile (PAN) precursor to form carbon fibers. Scanning electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy were used to characterize the fibers at different evolution stages. It was found that MPECVD-carbonized PAN fibers do not exhibit any significant change in the fiber diameter, whilst conventionally carbonized PAN fibers show a 33% reduction in the fiber diameter. An additional coating of carbon nanowalls (CNWs) was formed on the surface of the carbonized PAN fibers during the MPECVD process without the assistance of any metallic catalysts. The result presented here may have a potential to develop a novel, economical, and straightforward approach towards the mass production of carbon fibrous materials containing CNWs. © 2013 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we study for the first time the influence of microwave power higher than 2.0 kW on bonded hydrogen impurity incorporation (form and content) in nanocrystalline diamond (NCD) films grown in a 5 kW MPCVD reactor. The NCD samples of different thickness ranging from 25 to 205 μm were obtained through a small amount of simultaneous nitrogen and oxygen addition into conventional about 4% methane in hydrogen reactants by keeping the other operating parameters in the same range as that typically used for the growth of large-grained polycrystalline diamond films. Specific hydrogen point defect in the NCD films is analyzed by using Fourier-transform infrared (FTIR) spectroscopy. When the other operating parameters are kept constant (mainly the input gases), with increasing of microwave power from 2.0 to 3.2 kW (the pressure was increased slightly in order to stabilize the plasma ball of the same size), which simultaneously resulting in the rise of substrate temperature more than 100 °C, the growth rate of the NCD films increases one order of magnitude from 0.3 to 3.0 μm/h, while the content of hydrogen impurity trapped in the NCD films during the growth process decreases with power. It has also been found that a new H related infrared absorption peak appears at 2834 cm-1 in the NCD films grown with a small amount of nitrogen and oxygen addition at power higher than 2.0 kW and increases with power higher than 3.0 kW. According to these new experimental results, the role of high microwave power on diamond growth and hydrogen impurity incorporation is discussed based on the standard growth mechanism of CVD diamonds using CH4/H2 gas mixtures. Our current experimental findings shed light into the incorporation mechanism of hydrogen impurity in NCD films grown with a small amount of nitrogen and oxygen addition into methane/hydrogen plasma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Standard Cosmological Model is generally accepted by the scientific community, there are still an amount of unresolved issues. From the observable characteristics of the structures in the Universe,it should be possible to impose constraints on the cosmological parameters. Cosmic Voids (CV) are a major component of the LSS and have been shown to possess great potential for constraining DE and testing theories of gravity. But a gap between CV observations and theory still persists. A theoretical model for void statistical distribution as a function of size exists (SvdW) However, the SvdW model has been unsuccesful in reproducing the results obtained from cosmological simulations. This undermines the possibility of using voids as cosmological probes. The goal of our thesis work is to cover the gap between theoretical predictions and measured distributions of cosmic voids. We develop an algorithm to identify voids in simulations,consistently with theory. We inspecting the possibilities offered by a recently proposed refinement of the SvdW (the Vdn model, Jennings et al., 2013). Comparing void catalogues to theory, we validate the Vdn model, finding that it is reliable over a large range of radii, at all the redshifts considered and for all the cosmological models inspected. We have then searched for a size function model for voids identified in a distribution of biased tracers. We find that, naively applying the same procedure used for the unbiased tracers to a halo mock distribution does not provide success- full results, suggesting that the Vdn model requires to be reconsidered when dealing with biased samples. Thus, we test two alternative exten- sions of the model and find that two scaling relations exist: both the Dark Matter void radii and the underlying Dark Matter density contrast scale with the halo-defined void radii. We use these findings to develop a semi-analytical model which gives promising results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the results of searches for dipolar-type anisotropies in different energy ranges above 2.5 x 10(17) eV with the surface detector array of the Pierre Auger Observatory, reporting on both the phase and the amplitude measurements of the first harmonic modulation in the right-ascension distribution. Upper limits on the amplitudes are obtained, which provide the most stringent bounds at present, being below 2% at 99% C.L. for EeV energies. We also compare our results to those of previous experiments as well as with some theoretical expectations. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a morphology study of intermediate-redshift (0.2 < z < 1.2) luminous infrared galaxies (LIRGs) and general field galaxies in the GOODS fields using a revised asymmetry measurement method optimized for deep fields. By taking careful account of the importance of the underlying sky-background structures, our new method does not suffer from systematic bias and offers small uncertainties. By redshifting local LIRGs and low-redshift GOODS galaxies to different higher redshifts, we have found that the redshift dependence of the galaxy asymmetry due to surface-brightness dimming is a function of the asymmetry itself, with larger corrections for more asymmetric objects. By applying redshift-, infrared (IR)-luminosity- and optical-brightness-dependent asymmetry corrections, we have found that intermediate-redshift LIRGs generally show highly asymmetric morphologies, with implied merger fractions ~50% up to z = 1.2, although they are slightly more symmetric than local LIRGs. For general field galaxies, we find an almost constant relatively high merger fraction (20%-30%). The B-band luminosity functions (LFs) of galaxy mergers are derived at different redshifts up to z = 1.2 and confirm the weak evolution of the merger fraction after breaking the luminosity-density degeneracy. The IR LFs of galaxy mergers are also derived, indicating a larger merger fraction at higher IR luminosity. The integral of the merger IR LFs indicates a dramatic evolution of the merger-induced IR energy density [(1 + z)^~(5-6)], and that galaxy mergers start to dominate the cosmic IR energy density at z greater than or ~ 1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30-80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy-corrected for geometrical effects-is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.