967 resultados para Corals.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microbial communities play important roles in the functioning of coral reef communities. However, extensive autofluorescence of coral tissues and endosymbionts limits the application of standard fluorescence in situ hybridization (FISH) techniques for the identification of the coral-associated bacterial communities. This study overcomes these limitations by combining FISH and spectral imaging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coral bleaching (the loss of symbiotic dinoflagellates from reef-building corals) is most frequently caused by high-light and temperature conditions. We exposed the explants of the hermatypic coral Stylophora pistillata to four combinations of light and temperature in late spring and also in late summer. During mid-summer, two NOAA bleaching warnings were issued for Heron Island reef (Southern Great Barrier Reef, Australia) when sea temperature exceeded the NOAA bleaching threshold, and a 'mild' (in terms of the whole coral community) bleaching event occurred, resulting in widespread S. pistillata bleaching and mortality. Symbiotic dinoflagellate biomass decreased by more than half from late spring to late summer (from 2.5x10(6) to 0.8x10(6) dinoflagellates cm(2) coral tissue), and those dinoflagellates that remained after summer became photoinhibited more readily (dark-adapted F (V) : F (M) decreased to (0.3 compared with 0.4 in spring), and died in greater numbers (up to 17% dinoflagellate mortality compared with 5% in the spring) when exposed to artificially elevated light and temperature. Adding exogenous antioxidants (D-mannitol and L-ascorbic acid) to the water surrounding the coral had no clear effect on either photoinhibition or symbiont mortality. These data show that light and temperature stress cause mortality of the dinoflagellate symbionts within the coral, and that susceptibility to light and temperature stress is strongly related to coral condition. Photoinhibitory mechanisms are clearly involved, and will increase through a positive feedback mechanism: symbiont loss promotes further symbiont loss as the light microenvironment becomes progressively harsher.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low Isles Reef is the most southerly located of 46 coral reef platforms unique to the inner shelf of the northern Great Barrier Reef Province, Australia, which support both sea grass and mangrove growth. Such reefs develop in areas that are influenced by river flood plumes and where interreef sediments are dominated by terrigenous mud. Low Isles Reef has long been a popular tourist destination. Informal reports of decreasing visibility, a decline in scleractinian corals, and increases in soft coral and macroalgae have sparked speculation that agricultural activities in coastal catchments are affecting the reef. Comparison of the modern surface of Low Isles Reef with historical surveys and photographs dating back to 1928 allows quantification of modern sedimentary processes, rates of change, and factors influencing reef development. Results indicate that changes on Low Isles Reef are related to remobilization of coarse sediment during storm events and gradual shoreline retreat associated with rising sea level. Retreat of shingle ramparts and elongate ridges of coral debris toward the reef interior has led to the infilling of subtidal ponds on the reef top, which supported hard coral colonies in 1928. The gradual development of a composite shingle rampart along the windward margin has promoted an increase (;150%) in the area of the reef top covered by mangroves. On the leeward margin, a decrease in hard corals since 1950 may reflect a rising contribution of organic debris from the expanding mangrove swamp. Results suggest that recent changes on Low Isles Reef can be explained in the context of natural processes. Further study is needed before the effects of agricultural activities in coastal catchments on reef health can be confirmed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heating the scleractinian coral, Montipora monasteriata (Forskal 1775) to 32 degrees C under < 650 mu mol quanta m(-2) s(-1) led to bleaching in the form of a reduction in Peridinin, xanthophyll pool, chlorophyll c(2) and chlorophyll a, but areal dinoflagellates densities did not decline. Associated with this bleaching, chlorophyll (Chl) allomerization and dinoflagellate xanthophyll cycling increased. Chl allomerization is believed to result from the interaction of Chl with singlet oxygen (O-1(2)) or other reactive oxygen species. Thermally induced increases in Chl allomerization are consistent with other studies that have demonstrated that thermal stress generates reactive oxygen species in symbiotic dinoflagellates. Xanthophyll cycling requires the establishment of a pH gradient across the thylakoid membrane. Our results indicate that, during the early stages of thermal stress, thylakoid membranes are intact. Different morphs of M. monasteriata responded differently to the heat stress applied: heavily pigmented coral hosts taken from a high-light environment showed significant reductions in green fluorescent protein (GFP)-like homologues, whereas nonhost pigmented high-light morphs experienced a significant reduction in water-soluble protein content. Paradoxically, the more shade acclimated cave morph were, based on Chl fluorescence data, less thermally stressed than either of the high-light morphs. These results Support the importance of coral pigments for the regulation of the light environment within the host tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marine invertebrates representing at least five phyla are symbiotic with dinoflagellates from the genus Symbiodinium. This group of single-celled protists was once considered to be a single pandemic species, Symbiodinium microadriaticum. Molecular investigations over the past 25 years have revealed, however, that Symbiodinium is a diverse group of organisms with at least eight (A-H) divergent clades that in turn contain multiple molecular subclade types. The diversity within this genus may subsequently determine the response of corals to normal and stressful conditions, leading to the proposal that the symbiosis may impart unusually rapid adaptation to environmental change by the metazoan host. These questions have added importance due to the critical challenges that corals and the reefs they build face as a consequence of current rapid climate change. This review outlines our current understanding of the diverse genus Symbiodinium and explores the ability of this genus and its symbioses to adapt to rapid environmental change. (c) 2006 Rubel Foundation, ETH Zurich. Published by Elsevier GmbH. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In oligotrophic waters the light spectrum is mostly blue, and therefore the physiological and biochemical responses to blue light occurring in the coral tissue and in the symbiotic algae are important. Examination of the wavelength dependence of two free radical scavenger enzyme activity revealed an increase in activity in the blue light range (440-480 nm) compared to the red (640680 nm) in the full visible light (400-700 nm) range. These data show for the first time the relationship between the action spectra of photosynthesis and the activity of two main antioxidant enzymes in the symbiotic coral Favia favus. It was found that in the animal (host) the enzyme response to the spectral distribution of light was higher than that of the zooxanthellae, probably due to accumulation of free radicals within the host tissue. Furthermore, we found that the activity of these enzymes is affected in nature by the length of the day and night, and in the laboratory, by the duration of the illumination. Changes in the pigment concentrations were also observed in response to growth under the blue region and the whole PAR spectrum, while fluorescence measurements with the fast repetition rate fluorometer (FRRF) showed a decrease in the sigma cross section and a decrease in the quantum yield also in the blue part of the spectrum. These changes of scavenger enzymes activity, pigment concentration and fluorescence yield at different light spectra are vital in acclimatization and survival of corals in shallow water environments with high light radiation. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coral reefs are in serious decline, and research in support of reef management objectives is urgently needed. Reef connectivity analyses have been highlighted as one of the major future research avenues necessary for implementing effective management initiatives for coral reefs. Despite the number of new molecular genetic tools and the wealth of information that is now available for population-level processes in many marine disciplines, scleractinian coral population genetic information remains surprisingly limited. Here we examine the technical problems and approaches used, address the reasons contributing to this delay in understanding, and discuss the future of coral population marker development. Considerable resources are needed to target the immediate development of an array of relevant genetic markers coupled with the rapid production of management focused data in order to help conserve our globally threatened coral reef resources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Following rapid lesion progression of white syndrome in tabular Acropora spp., the white bare skeleton gradually changes to green, a result of endolithic algae blooms (primarily Ostreobium spp.). Endolithic algal biomass and chlorophyll concentration were found to be an order of magnitude higher in the green zone compared with healthy appearing parts of each colony. Chl b to Chl a ratio increased from 1:1.6 in the healthy area to 1:2 and 1:3.5 in the white exposed skeleton and green zones, respectively. These observations together with pulse amplitude modulated (PAM) fluorometry suggest photoacclimation of the endoliths in the green zone. Histopathological microscopy revealed that the endolithic algal filaments penetrate the coral tissue. This study highlights the interaction of endolithic algae with both the skeleton and host tissue. This may have a critical role in the processes that accompany the post-disease state in reef-building corals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Early work on sea-levels in southwest Australia claimed to recognise a Holocene sea-level highstand which was not seen in better known sea-level records elsewhere at the time. More recent work has confirmed that a mid-Holocene highstand Occurred about 6 kyr ago. As new data on oscillating sea-levels from the region have recently been published, a high continuity, precisely dated and accurately surveyed record was obtained from emergent coral pavements in the leeward Houtman Abrolhos Islands (Serventy Island), a tectonically stable region from where good-quality Holocene sea-level data have been previously obtained from corals. From the mid-Holocene highstand ca. 7 U/Th kyr ago, sea-level declined linearly during the remainder of the Holocene as the carbonate platform prograded leewards. Hydro-isostatic controls are probably significant in the record. (c) 2005 Elsevier Ltd and INQUA. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potential role of viruses in coral disease has only recently begun to receive attention. Here we describe our attempts to determine whether viruses are present in thermally stressed corals Pavona danai, Acropora formosa and Stylophora pistillata and zoanthids Zoanthus sp., and their zooxanthellae. Heat-shocked P. danai, A. formosa and Zoanthus sp. all produced numerous virus-like particles (VLPs) that were evident in the animal tissue, zooxanthellae and the surrounding seawater; VLPs were also seen around heat-shocked freshly isolated zooxanthellae (FIZ) from P. danai and S. pistillata. The most commonly seen VLPs were tail-less, hexagonal and about 40 to 50 nm in diameter, though a diverse range of other VLP morphotypes (e.g. rounded, rod-shaped, droplet-shaped, filamentous) were also present around corals. When VLPs around heat-shocked FIZ from S. pistillata were added to non-stressed FIZ from this coral, they resulted in cell lysis, suggesting that an infectious agent was present; however, analysis with transmission electron microscopy provided no clear evidence of viral infection. The release of diverse VLPs was again apparent when flow cytometry was used to enumerate release by heat-stressed A. formosa nubbins. Our data support the infection of reef corals by viruses, though we cannot yet determine the precise origin (i.e. coral, zooxanthellae and/or surface microbes) of the VLPs seen. Furthermore, genome sequence data are required to establish the presence of viruses unequivocally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lithofacies distribution indicates that the Much Wenlock Limestone Formation of England and South Wales was desposited on a shelf which was flat and gently subsiding in the north, but topographically variable in the south. Limestone deposition in the north began with 12m of alga-rich limestone, which formed an upward shoaling sequence. Deepening then led to deposition of calcareous silty mudstones on the northern shelf. The remainder of the formation in this area formed during a shelf-wide regression, culminating in the production of an E to W younging sandbody. Lithofacies distribution on the southern shelf was primarily controlled by local subsidence. Six bedded lithofacies are recognised which contain 14 brachiopod/bryozoan dominated assemblages, of which 11 are in situ and three consist of reworked fossils. Microfacies analysis is necessary to distinguish assemblages which reflect original communities from those which reflect sedimentary processes. Turbulence, substrate-type, ease of feeding and other organisms in the environment controlled faunal distribution. Reefs were built dominantly by corals, stromatoporoids, algae and crinoids. Coral/stromatoporoid (Type A) reefs are common, particularly on the northern shelf, where they formed in response to shallowing, ultimately growing in front of the advancing carbonate sandbody. Algae dominate Type B and Type C reefs, reflecting growth in areas of poor water circulation. Lithification of the formation began in the marine-phreatic environment with precipitation of aragonite and high Mg calcite, which was subsequently altered to turbid low Mg calcite. Younger clear spars post-date secondary void formation. The pre-compactional clear spars have features which resemble the products of meteoric water diagenesis, but freshwater did not enter the formation at this time. The pre-compactional spars were precipitated by waters forced from the surrounding silty mudstones at shallow burial depths. Late diagenetic products are stylolites, compaction fractures and burial cements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Osteo-odonto-keratoprostheses (OOKP) is a unique form of keratoprosthesis involving surgical removal of a tooth root and surrounding bone from the patient which are then used to construct an osteo-odonto lamina into which an optical cylinder is cemented. The OOKP procedure is successful and capable of withstanding the very hostile ocular environments found in severe Stevens–Johnson syndrome, pemphigoid, chemical burns, trachoma and multiple corneal graft failure. The existing procedure is complex and time consuming in terms of operative time, and additionally involves sacrifice of the oral structures. This paper discusses the rational search for a “synthetic” analogue of the dental lamina, capable of mimicking those features of the natural system that are responsible for the success of OOKP. In this study the degradation of selected commercial and natural bioceramics was tested in vitro using a purpose-designed resorption assay. Degradation rate was compared with tooth and bone, which are currently used in OOKP lamina. At normal physiological pH the degradation of bioceramics was equivalent to tooth and bone; however, at pH 6.5–5.0, associated with infectious and inflamed tissues, the bioceramics degrade more rapidly. At lower pH the degradation rate decreased in the following order: calcium carbonate corals > biphasic calcium phosphates > hydroxyapatite. Porosity did not significantly influence these degradation rates. Such degradation is likely to compromise the stability and viability of the synthetic OOKP. Consequently more chemically stable materials are required that are optimized for the surrounding ocular environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One goal of comparative immunology is to derive inferences about evolutionary pathways in the development of immune-defense systems. Almost 700 million years ago, a major divergence occurred in the phylogeny of animals, spitting all descendants into either the protostome or deuterostome (includes vertebrates) lineages. Genes have evolved independently along these lineages for that amount of time. Cnidarians originated before that divergence event, and can hold clues as to which immune response genes are homologous to both lineages. This work uses the gorgonian coral, Swiftia exserta, for two major reasons: (1) because of their phylogenetic position, corals are an important animal model in studies concerning the phylogeny of immune-response genes, and (2) nothing is known about the genes controlling immunocompetence in corals. The work described here has important implications in both innate and adaptive immunity. ^ The vertebrate complement system is a major component of innate immunity. C3 is a critical component of the three pathways of complement. Because of its opsonic properties, a C3-like protein is expected to have evolved early. However, currently available data suggests that complement-like components are unique to the deuterostome lineage. This work describes the cloning and characterization of a C3-like gene from S. exserta. The deduced polypeptide sequence reveals conservation of multiple, functionally critical, sites while sharing physiochemical and structural properties with the complement components C3/C4/C5. ^ Antigen processing, via intracellular enzymatic proteasomes, is a major requirement of vertebrate adaptive immunity. These organelles have a catalytic core, through which pass intracellular proteins for degradation into peptides presentable to the immune system. LMP 7 is one component of the paralogous “immuno-proteasome”. LMP 7 is a paralog of the ubiquitous LMP X, but is restricted to vertebrates. While LMP 7 is absent in the coral, this work describes a coral LMP X gene. Phylogenetic analyses, along with hydropathy profiling of a critical portion of the invertebrate and vertebrate paralogous genes, suggests that some invertebrates have two diverging LMP X genes. In some cases, one LMP X protein shares characteristics with vertebrate LMP 7. This work presents new evidence for how the LMP X and 7 genes evolved. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coral reefs are in decline worldwide and coral disease is a significant contributing factor. However, etiologies of coral diseases are still not well understood. In contrast with the Caribbean, extremely little is known about coral diseases in the Philippines. In 2005, off Southeast Negros Island, Philippines, I investigated relationships between environmental parameters and prevalence of the two most common coral diseases, ulcerative white spot (UWS) and massive Porites growth anomalies (MPGAs). Samples were collected along a disease prevalence gradient 40.5 km long. Principal component analyses showed prevalence of MPGAs was positively correlated with water column nitrogen, organic carbon of surface sediments, and colony density. UWS was positively correlated with water column phosphorus. This is the first quantitative evidence linking anthropogenically-impacted water and sediment to a higher prevalence of these diseases. Histological and cytological alterations were investigated by comparing tissues from two distinct types of MPGA lesions (types 1 and 2) and healthy coral using light and electron microscopy. Skeletal abnormalities and sloughing, swelling, thinning, and loss of tissues in MPGAs resembled tissues exposed to bacterial or fungal toxins. Both lesion types had decreases in symbiotic zooxanthellae, which supply nutrients to corals. Notable alterations included migrations of chromophore cells (amoebocytes) (1) nocturnally to outer epithelia to perform wound-healing, including plugging gaps and secreting melanin in degraded tissues, and (2) diurnally to the interior of the tissue possibly to prevent shading zooxanthellae in order to maximize photosynthate production. Depletion of melanin (active in wound healing) in type 2 lesions suggested type 2 tissues were overtaxed and less stable. MPGAs contained an abundance of endolithic fungi and virus-like particles, which may result from higher nutrient levels and play roles in disease development. Swollen cells and mucus frequently blocked gastrovascular canals (GVCs) in MPGAs. Type 1 lesions appeared to compensate for impeded flow of wastes and nutrients through these canals with proliferation of new GVCs, which were responsible for the observed thickened tissues. In contrast, type 2 tissues were thin and more degraded. Dysplasia and putative neoplasia were also observed in MPGAs which may result from the tissue regeneration capacity being overwhelmed.