945 resultados para Copper plating.
Resumo:
Oxidised low density lipoprotein (LDL) may be involved in the pathogenesis of atherosclerosis. We have therefore investigated the mechanisms underlying the antioxidant/pro-oxidant behavior of dehydroascorbate, the oxidation product of ascorbic acid, toward LDL incubated With Cu2+ ions. By monitoring lipid peroxidation through the formation of conjugated dienes and lipid hydroperoxides, we show that the pro-oxidant activity of dehydroascorbate is critically dependent on the presence of lipid hydroperoxides, which accumulate during the early stages of oxidation. Using electron paramagnetic resonance spectroscopy, we show that dehydroascorbate amplifies the generation of alkoxyl radicals during the interaction of copper ions with the model alkyl hydroperoxide, tert-butylhydroperoxide. Under continuous-flow conditions, a prominent doublet signal was detected, which we attribute to both the erythroascorbate and ascorbate free radicals. On this basis, we propose that the pro-oxidant activity of dehydroascorbate toward LDL is due to its known spontaneous interconversion to erythroascorbate and ascorbate, which reduce Cu2+ to Cu+ and thereby promote the decomposition of lipid hydroperoxides. Various mechanisms, including copper chelation and Cu+ oxidation, are suggested to underlie the antioxidant behavior of dehydroascorbate in LDL that is essentially free of lipid hydroperoxides. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Oxidised low density lipoprotein (LDL) may play a role in atherogenesis. We have investigated some of the mechanisms by which the thiol cysteine and the disulphide cystine can influence the oxidation of LDL by copper ions. Cysteine or cystine (100 PM) inhibited the oxidation of native LDL by copper in a simple phosphate buffer. One of the mechanisms by which cysteine (or more likely its oxidation products in the presence of copper) and cystine inhibited LDL oxidation was by decreasing the binding of copper to LDL (97% inhibition). Cysteine, but not cystine, rapidly reduced Cu2+ to Cu+. This may help to explain the antioxidant effect of cysteine as it may limit the amount of Cu2+ that is available to convert alpha-tocopherol in LDL into the prooxidant alpha-tocopherol radical. Cysteine (but not cystine) had a prooxidant effect, however, toward partially oxidised LDL in the presence of a low copper concentration, which may have been due to the rapid breakdown of lipid hydroperoxides in partially oxidised LDL by Cu+ generated by cysteine. To prove that cysteine can cause the rapid breakdown of lipid hydroperoxides in LDL, we enriched LDL with lipid hydroperoxides using an azo initiator in the absence of copper. Cysteine, but not cystine, increased the rate of lipid hydroperoxide decomposition to thiobarbituric acid-reactive substances (TBARS) in the presence of copper. (C) 2003 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Two novel benzodioxotetraaza macrocycles [2,9-dioxo-1,4,7,10-tetraazabicyclo[10.4.0]1,11-hexadeca-1(11),13,15-triene (H(2)L1) and 2,10-dioxo-1,4,8,11-tetraazabicyclo[11.4.0]1,12-heptadeca-1(12),14,16-triene (H(2)L2)] were synthesized by a [1 + 1] crablike cyclization. The protonation constants of both ligands were determined by H-1 NMR titration and by potentiometry at 25.0 degrees C in 0.10 M ionic strength in KNO3. The latter method was also used to ascertain the stability constants of their copper(II) complexes. These studies showed that the CuL1 complex has a much lower thermodynamic stability than the CuL2, and the H(2)L2 displays an excellent affinity for copper(II), due to the good fit of copper(II) into its cavity. The copper complexes of the novel ligands were characterized by electronic spectroscopy in solution and by crystal X-ray diffraction. These studies indicated that the copper center in the CuL1 complex adopts a square-pyramidal geometry with the four nitrogen atoms of the macrocycle forming the equatorial plane and a water molecule at axial position, and the copper in the CuL2 complex is square-planar. Several labeling conditions were tested, and only H(2)L2 could be labeled with Cu-67 efficiently (> 98%) in mild conditions (39 degrees C, 15 min) to provide a slightly hydrophilic radioligand (log D = -0.19 +/- 0.03 at pH 7.4). The in vitro stability was studied in the presence of different buffers or with an excess of diethylenetriamine-pentaethanoic acid. Very high stability was shown under these conditions for over 5 days. The incubation of the radiocopper complex in human serum showed 6% protein binding.
Resumo:
The synthesis of new Cu-VOx nanotubes has been achieved by exchanging a Cu(II) salt against the protonated template in the parent dodecylamine-VOx nanotubes. The intercalation of Cu(II) species induces some significant morphological and structural changes within the material, but the tubular shape is still well preserved. Controlled thermolysis under nitrogen of the Cu(II) species initially dispersed within the multiwalls induces the growth and sintering of copper nanoparticles, which are formed without destroying the tubular morphology of the host carrier. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
C14H10CuN4OS, monoclinic, P12(1)/nl (no. 14), a = 8.837(1) angstrom, b = 15.625(2) angstrom, c = 10.366(1) angstrom, beta = 103.36(1)degrees, V = 1392.6 angstrom(3), Z = 4, R-gt(F) = 0.029, WRref(F-2) = 0.076, T = 150 K.
Resumo:
The tridentate Schiff base ligand, 7-amino-4-methyl-5-aza-3-hepten-2-one (HAMAH), prepared by the mono-condensation of 1,2diaminoethane and acetylacetone, reacts with Cu(BF4)(2) center dot 6H(2)O to produce initially a dinuclear Cu(II) complex, [{Cu(AMAH)}(2) (mu-4,4'-bipyJ](BF4)(2) (1) which undergoes hydrolysis in the reaction mixture and finally produces a linear polymeric chain compound, [Cu(acac)(2)(mu-4,4'-bipy)](n) (2). The geometry around the copper atom in compound 1 is distorted square planar while that in compound 2 is essentially an elongated octahedron. On the other hand, the ligand HAMAH reacts with Cu(ClO4)(2) center dot 6H(2)O to yield a polymeric zigzag chain, [{Cu(acac)(CH3OH)(mu-4,4'-bipy)}(ClO4)](n) (3). The geometry of the copper atom in 3 is square pyramidal with the two bipyridine molecules in the cis equatorial positions. All three complexes have been characterized by elemental analysis, IR and UV-Vis spectroscopy and single crystal X-ray diffraction studies. A probable explanation for the different size and shape of the reported polynuclear complexes formed by copper(II) and 4,4'-bipyridine has been put forward by taking into account the denticity and crystal field strength of the blocking ligand as well as the Jahn-Teller effect in copper(II). (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Three new polynuclear copper(II) complexes of singly deprotonated L-glutamic acid (L-glu), {[Cu(bipy)(2)][Cu(bipy)(L-glu)H2O](2)(BF4)(4)center dot(H2O)(3)}(n) (1), {[Cu(bipy)(L-glu)H2O][Cu(bipy)(L-glu)(ClO4)]( ClO4)center dot(H2O)(2)}(n) ((2)) and [Cu(phen)(L-glu)H2O](2)(NO3)(2)center dot(H2O)(4) (3) (bipy = 2,2-bipyridine, phen = 1,10-phenanthroline), were synthesized in acidic pH (ca. 2.5) and characterized structurally. In all the complexes, L-glutamic acid acts as a bidentate chelating ligand, leaving the protonated carboxylic acid free. Both in 1 and 2, two different types of species [Cu(bipy)(2)](BF4)(2) and [Cu(bipy)(L-glu)H2O] BF4 for 1 and [Cu(bipy)(L-glu)H2O]ClO4 and [Cu(bipy)(L-glu)(ClO4)] for 2 coexist in the solid state. In complex 1, the [C( bipy)(L-glu)H2O]+ units are joined together by syn-anti carboxylate bridges to form an enantiopure (M) helical chain and the [Cu(bipy)(2)](2+) presents a very rare example of the four-coordinate distorted tetrahedral geometry of Cu(II). In complex 2, the [Cu(bipy)(L gluClO(4))] units are joined together by weakly coordinating perchlorate ions to form a 1D polymeric chain while the [Cu(bipy)(L-glu)H2O]+ units remain as mononuclear species. The different coordinating ability of the two counter anions along with their involvement in the H-bonding network seems likely to be responsible for the difference in the final polymeric structures in the two compounds. Variable-temperature (2-300 K) magnetic susceptibility measurements show negligible coupling for both the complexes. The structure of 3 consists of two independent monomeric [Cu(phen)(L-glu)H2O]+ cations, two nitrate anions and four water molecules. The copper atom occupies a five-coordinate square pyramidal environment with a water molecule in the axial position.
Resumo:
The hexaazamacrocycle 7,22-dimethyl-3,7,11,18,22,26-hexaazatricyclo[26.2.2.2(13,16)] tetratriaconta-1(30), 13,15,28,31,33- hexaene (Me-2[30] pbz(2)N(6)) was synthesized and characterised by single crystal X-ray diffraction. The macrocycle adopts a conformation with the two aromatic rings almost parallel at a distance of ca. 4.24 Angstrom, but displaced relative to each other by ca. 1.51 Angstrom. The protonation constants of this compound and the stability constants of its complexes with Cu2+ and Zn2+, were determined in water - methanol (9 : 1 v/v) at 25 degreesC with ionic strength 0.10 mol dm(-3) in KCl. The potentiometric and spectroscopic studies (NMR of zinc, cadmium and lead complexes, and EPR of the copper complexes) indicate the formation of only dinuclear complexes. The association constants of the dinuclear copper complex with anions ( thiocyanate, terephthalate and glyphosate) and neutral molecules (1,4-benzenedimethanol, p-xylylenediamine and terephthalic acid) were determined at 20 degreesC in methanol. The structural preferences of this ligand and of its dinuclear copper(II) complex with a variety of bridging ligands were evaluated theoretically by molecular mechanics calculations (MM) and molecular dynamics (MD) using quenching techniques.
Resumo:
A new mononuclear Cu(II) complex, [CuL(ClO4)(2)] (1) has been derived from symmetrical tetradentate di-Schiff base, N,N'-bis-(1-pyridin-2-yl-ethylidene)-propane-1,3-diamine (L) and characterized by X-ray crystallography. The copper atom assumes a tetragonally distorted octahedral geometry with two perchlorate oxygens coordinated very weakly in the axial positions. Reactions of I with sodium azide, ammonium thiocyanate or sodium nitrite solution yielded compounds [CuL(N-3)]ClO4 (2), [CuL(SCN)ClO4 (3) or [CuL(NO2)]-ClO4 (4), respectively, all of which have been characterized by X-ray analysis. The geometries of the penta-coordinated copper(H) in complexes 2-4 are intermediate between square pyramid and trigonal bipyramid (tbp) having the Addition parameters (tau) 0.47, 0.45 and 0.58, respectively. In complex 4, the nitrite ion is coordinated as a chelating ligand and essentially both the 0 atoms of the nitrite occupy one axial site. Complex 1 shows distinct preference for the anion in the order SCN- > N-3(-) > NO2- in forming the complexes 24 when treated with a SCN-/N-3(-)/NO2- mixture. Electrochemical electron transfer study reveals (CuCuI)-Cu-II reduction in acetonitrile solution. (c) 2006 Elsevier B.V.. All rights reserved.
Resumo:
The title compound, [Cu(C4H8N3O2)(2)]center dot 2C(5)H(9)NO, consists of a neutral copper complex, in which the Cu II centre coordinates to two bis(methoxycarbimido) aminate ligands, solvated by two molecules of 1-methylpyrrolidin-2-one. The complex is planar and centrosymmetric, with the Cu II centre occupying a crystallographic inversion centre and adopting approximately square-planar geometry. N-H center dot center dot center dot O hydrogen-bonding interactions exist between the amine NH groups of the ligands and the O atoms of the 1-methylpyrrolidin-2-one molecules. The associated units pack to form sheets.
Resumo:
The structural transformations between cesium silver-copper cyanides under modest conditions, both in solution and in the solid state, are described. Three new cesium silver(I) copper(I) cyanides with three-dimensional (3-D) framework structures were prepared as single crystals from a one-pot reaction initially heated under hydrothermal conditions. The first product to appear, Cs3Ag2Cu3(CN)(8) (I), when left in contact with the supernatant produced CsAgCu(CN)(3) (II) and CsAgCu(CN)(3)center dot 1/3H(2)O (III) over a few months via a series of thermodynamically controlled cascade reactions. Crystals of the hydrate (III) can be dehydrated to polycrystalline CsAgCu(CN)(3) (II) on heating at 100 degrees C in a remarkable solid-state transformation involving substantial breaking and reconnection of metal-cyanide linkages. Astonishingly, the conversion between the two known polymorphs of CsAg2Cu(CN)(4), which also involves a major change in connectivity and topology, occurs at 180 degrees C as a single-crystal to single-crystal transformation. Structural features of note in these materials include the presence of helical copper-cyanide chains in (I) and (II), which in the latter compound produce a chiral material. In (II) and (III), the silver-copper cyanide networks are both self- and interpenetrating, features also seen in the known polymorphs of CsAg2Cu(CN)(4).
Resumo:
Single helical [(CuL)-L-I]ClO4.12CH(2)Cl(2) (L=1:2 condensate of benzil dihydrazone and 2-acetylpyridine) unfolds and coils up in CH2Cl2 solution to generate double helical [(Cu2L2)-L-I](2+).
Resumo:
Hexadecanuclear copper mixed-valence complex 2 containing 10 Cu-II, centers and 6 Cu-I centers was isolated with N,O donor ligands. From the X-ray crystal structure, 2 was found to contain a centrosymmetric dimeric cation - each monomeric unit composed of eight copper centers. It displays a very broad and weak intervalence charge-transfer band around 1100 nm at room temperature in the solid state. Variable-temperature magnetic susceptibility measurements indicate an S = 1/2 ground state for half of 2, explicitly, each Cu-8 moiety has a g value around 2.26. Complex 2 was examined by NMR spectroscopy at room temperature in solution and by EPR at low temperature; the data indicates that the valence is delocalized in 2 at room temperature but localized at low temperature. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007)
Resumo:
The copper(I) complex of L, the 1:2 condensate of benzil dihydrazone and 2-formylpyridine, exists as single, helical [CuL](+) and double helical [Cu2L2](2+) in dichloromethane solution but crystallizes only as the double helicate [Cu2L2](ClO4)(2). In contrast, earlier [New J Chem, 27 (2003) 193] it has been found that with L', the 1:2 condensate of benzil dihydrazone and 2-acetylpyridine, only the single helical monomeric species [CuL'](+) is isolable as solid. This contrasting behaviour of the copper(I) complexes of L and L' are scrutinised here by density functional calculations.