841 resultados para Copper Oxides
Resumo:
Several methods have been investigated, with some success, for treating scrap brass to recover copper and zinc, either as pure metals or as salts of the metals. One of the more promising of these methods is electrolysis in sulfate solution for the recovery of pure copper and zinc.
Resumo:
The geologic history of the Holden area and Lake Chelan district is an integral part of the history of the Cascade Mountain Range. The structure is very complex and the rocks, which have been subjected to intense metamorphic action, are portions of a roof pendant and consists of gneisses, schists and quartzites that are often difficult to correlate.
Resumo:
The subject of the thesis was based upon the theory of precipitation or age hardening of the copper by the compound formed by the Manganese and silicon present in the ternary Cu-Mn-Si alloy. The effect of the heat treatment to such an alloy was to be studied and the best aging time and temperature was to be determined.
Resumo:
Index for volume 3 (Aug. 1942-Aug. 1945) lists personal names, places, subjects; page and issue numbers.
Resumo:
This work presents a 1-D process scale model used to investigate the chemical dynamics and temporal variability of nitrogen oxides (NOx) and ozone (O3) within and above snowpack at Summit, Greenland for March-May 2009 and estimates surface exchange of NOx between the snowpack and surface layer in April-May 2009. The model assumes the surface of snowflakes have a Liquid Like Layer (LLL) where aqueous chemistry occurs and interacts with the interstitial air of the snowpack. Model parameters and initialization are physically and chemically representative of snowpack at Summit, Greenland and model results are compared to measurements of NOx and O3 collected by our group at Summit, Greenland from 2008-2010. The model paired with measurements confirmed the main hypothesis in literature that photolysis of nitrate on the surface of snowflakes is responsible for nitrogen dioxide (NO2) production in the top ~50 cm of the snowpack at solar noon for March – May time periods in 2009. Nighttime peaks of NO2 in the snowpack for April and May were reproduced with aqueous formation of peroxynitric acid (HNO4) in the top ~50 cm of the snowpack with subsequent mass transfer to the gas phase, decomposition to form NO2 at nighttime, and transportation of the NO2 to depths of 2 meters. Modeled production of HNO4 was hindered in March 2009 due to the low production of its precursor, hydroperoxy radical, resulting in underestimation of nighttime NO2 in the snowpack for March 2009. The aqueous reaction of O3 with formic acid was the major sync of O3 in the snowpack for March-May, 2009. Nitrogen monoxide (NO) production in the top ~50 cm of the snowpack is related to the photolysis of NO2, which underrepresents NO in May of 2009. Modeled surface exchange of NOx in April and May are on the order of 1011 molecules m-2 s-1. Removal of measured downward fluxes of NO and NO2 in measured fluxes resulted in agreement between measured NOx fluxes and modeled surface exchange in April and an order of magnitude deviation in May. Modeled transport of NOx above the snowpack in May shows an order of magnitude increase of NOx fluxes in the first 50 cm of the snowpack and is attributed to the production of NO2 during the day from the thermal decomposition and photolysis of peroxynitric acid with minor contributions of NO from HONO photolysis in the early morning.
Resumo:
This work, as it was originally planned, was the arranging of an apparatus whereby electrical resistivity measurements could be made on powder compacts. It was also to include measurements on a series of copper-nickel compacts both before and after sintering.
Resumo:
Powder metallurgy, the most recent innovation in metallurgical process, is not a new art; although not until recently did it become a matter of general interest, this being due not only to the products formed but also to the possibilities of future developments. The manufacture and application of metal powders is now beginning to take a position as a recognized part of the science of metallurgy.
Resumo:
Boron is an element whose metallurgical possibilities have never been fully investigated. The principal reason for this fact seems to lie in the difficulties encountered in preparing elemental boron and its various intermetallic compounds.
Resumo:
Age hardening occurs in alloys of the solid solution type containing a hardening constituent, be it metal or metallic compound, which is more soluble in the solvent phase at higher temperatures than at lower ones.
Resumo:
Plating of various objects with mirror-like surfaces of chromium, nickel, and other metals has expanded considerably during the past decade, and now ranks as an important enterprise, particularly with respect to the automotive industry.
Resumo:
Although powder metallurgical methods have been used for years to fabricate tungsten and platinum, very little scientific data have been recorded until the beginning of this century. A large percentage of all commercial production at present is based upon past practice rather than upon scientific knowledge.
Resumo:
A large number of alloys of varying percentages of copper and antimony were prepared. These alloys were treated in various ways which might be expected to produce age hardening. The effect of cold working was studied in the range where the alloys were malleable.
Resumo:
An attempt was made to deposit a 50:50 copper-cobalt alloy from various sulfate electrolytes. No true 50:50 alloy was obtained but various mixtures of cobalt and copper rich crystals were deposited.
Resumo:
Sometime prior to 1870, a group of prospectors made what was believed to be a "rich strike' on one of the tributaries of Prickly Pear Creek in Jefferson County, Montana. Instead of striking it rich, they had uncovered a native copper deposit, worthless to them because of its limited extent and remote location, but now of much interest to the geologist, and to the mining engineer because of its possible commercial value.
Resumo:
The electrolytic cleaning of metals by anodic methods has been known for many years. It was recognized long ago that when the temperature and concentration of the electrolyte were properly regulated, bright clean surfaces were obtained.