935 resultados para Copper (1)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Native Cu occurs in amygdules, fractures and groundmass of tholeiites from Ocean Drilling Program Site 642 on the Vøring Plateau. Similar occurrences have been reported in other tholeiites of the early Tertiary North Atlantic Volcanic Province drilled at Deep Sea Drilling Project Sites 342 on the Vøring Plateau and 553 on the Rockall Plateau. The flows containing the native Cu have distinctive alteration patterns characterized by the combination of reddened flow tops, distinctive pastel coloration of the upper parts of the flows, relative abundance of celadonite, and the presence of native Cu. These associations suggest that subaerial weathering and subsequent seawater-basalt interaction are related to the occurrence of native Cu. An additional factor may be the increase in compatibility of Cu in silicates and Fe- Ti oxides that may accompany sub-solidus oxidation of basaltic flows. Native Cu occurrences in Site 642 tholeiites have some striking similarities to the large native Cu deposits in the Precambrian basalts of the Keweenaw Peninsula, Michigan, that are suggestive of similar mineralization processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Composition of ore minerals in MAR sulflde occurrences related to ultramaflc rocks was studied using methods of mineragraphy, electron microscopy, microprobe analysis, and X-ray analysis. Objects are located at various levels of maturity of sulflde mounds owing to differences in age, duration and degree of activity of the following hydrothermal systems: generally inactive Logatchev-1 field (up to 66.5 ka old), inactive Logatchev-2 field (3.9 ka), and generally active Rainbow field (up to 23 ka). Relative to MAR submarine ore occurrences in the basalt substrate, mineralization in the hydrothermal fields mentioned above is characterized by high contents of Au, Cd, Co, and Ni, along with presence of accessory minerals of Co and Ni. The studied mounds differ in quantitative ratios of major minerals and structural-textural features of ores that suggest their transformation. Ores in the Logatchev-1 field are characterized by the highest Cu content and development of a wide range of multistage contrast exsolution structures of isocubanite and bornite. In the Logatchev-2 field, sphalerite-chalcopyrite and gold-arsenic exsolution structures are present, but isocubanite exsolution structures are less diverse and contrast. The Rainbow field is marked by presence of homogenous isocubanite and the subordinate development of exsolution structures. The authors have identified four new phases in the Cu-Fe-S system. Phases X and Y (close to chalcopyrite and isocubanite, respectively) make up lamellae among isocubanite exsolution products in the Logatchev-1 and Logatchev-2 fields. Phase Y includes homogenous zones in zonal chimneys of the Rainbow field. Phases A and B formed in the orange bornite domain at low-temperature alteration of chalcopyrite in the Logatchev-1 field. Mineral assemblages of the Cu-S system are most abundant and diverse in the Logatchev-1 field, but their development is minimal in the Logatchev-2 field where mainly Cu-poor sulfides of the geerite-covellite series have been identified. Specific features of mineral assemblages mentioned above reflect the maturity grade of sulfide mounds and can serve as indicators of maturity.