894 resultados para Conventional Methods
Resumo:
An array of substrates link the tryptic serine protease, kallikrein-related peptidase 14 (KLK14), to physiological functions including desquamation and activation of signaling molecules associated with inflammation and cancer. Recognition of protease cleavage sequences is driven by complementarity between exposed substrate motifs and the physicochemical signature of an enzyme's active site cleft. However, conventional substrate screening methods have generated conflicting subsite profiles for KLK14. This study utilizes a recently developed screening technique, the sparse matrix library, to identify five novel high-efficiency sequences for KLK14. The optimal sequence, YASR, was cleaved with higher efficiency (k(cat)/K(m)=3.81 ± 0.4 × 10(6) M(-1) s(-1)) than favored substrates from positional scanning and phage display by 2- and 10-fold, respectively. Binding site cooperativity was prominent among preferred sequences, which enabled optimal interaction at all subsites as indicated by predictive modeling of KLK14/substrate complexes. These simulations constitute the first molecular dynamics analysis of KLK14 and offer a structural rationale for the divergent subsite preferences evident between KLK14 and closely related KLKs, KLK4 and KLK5. Collectively, these findings highlight the importance of binding site cooperativity in protease substrate recognition, which has implications for discovery of optimal substrates and engineering highly effective protease inhibitors.
Resumo:
In this paper, the multi-term time-fractional wave diffusion equations are considered. The multiterm time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and techniques can also be extended to other kinds of the multi-term fractional time-space models with fractional Laplacian.
Resumo:
Anomalous subdiffusion equations have in recent years received much attention. In this paper, we consider a two-dimensional variable-order anomalous subdiffusion equation. Two numerical methods (the implicit and explicit methods) are developed to solve the equation. Their stability, convergence and solvability are investigated by the Fourier method. Moreover, the effectiveness of our theoretical analysis is demonstrated by some numerical examples. © 2011 American Mathematical Society.
Resumo:
In this paper, a class of fractional advection–dispersion models (FADMs) is considered. These models include five fractional advection–dispersion models, i.e., the time FADM, the mobile/immobile time FADM with a time Caputo fractional derivative 0 < γ < 1, the space FADM with two sides Riemann–Liouville derivatives, the time–space FADM and the time fractional advection–diffusion-wave model with damping with index 1 < γ < 2. These equations can be used to simulate the regional-scale anomalous dispersion with heavy tails. We propose computationally effective implicit numerical methods for these FADMs. The stability and convergence of the implicit numerical methods are analysed and compared systematically. Finally, some results are given to demonstrate the effectiveness of theoretical analysis.
Resumo:
Woman abuse in intimate heterosexual relationships takes different shapes and forms and is a worldwide public health problem. Many journalists, activists, and researchers, however, minimize the extent of woman abuse, sharply criticize feminist empirical, theoretical, and policy work on this issue, and disseminate myths about feminism. A key objective of this paper is to challenge these myths and respond to criticisms of feminist scholarship. Another goal is to show that some feminists use quantitative methods and that feminist techniques influence some types of conventional research, such as large-scale surveys conducted in Canada and the United States.
Resumo:
Conducting research into crime and criminal justice carries unique challenges. This Handbook focuses on the application of 'methods' to address the core substantive questions that currently motivate contemporary criminological research. It maps a canon of methods that are more elaborated than in most other fields of social science, and the intellectual terrain of research problems with which criminologists are routinely confronted. Drawing on exemplary studies, chapters in each section illustrate the techniques (qualitative and quantitative) that are commonly applied in empirical studies, as well as the logic of criminological enquiry. Organized into five sections, each prefaced by an editorial introduction, the Handbook covers: • Crime and Criminals • Contextualizing Crimes in Space and Time: Networks, Communities and Culture • Perceptual Dimensions of Crime • Criminal Justice Systems: Organizations and Institutions • Preventing Crime and Improving Justice Edited by leaders in the field of criminological research, and with contributions from internationally renowned experts, The SAGE Handbook of Criminological Research Methods is set to become the definitive resource for postgraduates, researchers and academics in criminology, criminal justice, policing, law, and sociology.
Resumo:
The discovery of protein variation is an important strategy in disease diagnosis within the biological sciences. The current benchmark for elucidating information from multiple biological variables is the so called “omics” disciplines of the biological sciences. Such variability is uncovered by implementation of multivariable data mining techniques which come under two primary categories, machine learning strategies and statistical based approaches. Typically proteomic studies can produce hundreds or thousands of variables, p, per observation, n, depending on the analytical platform or method employed to generate the data. Many classification methods are limited by an n≪p constraint, and as such, require pre-treatment to reduce the dimensionality prior to classification. Recently machine learning techniques have gained popularity in the field for their ability to successfully classify unknown samples. One limitation of such methods is the lack of a functional model allowing meaningful interpretation of results in terms of the features used for classification. This is a problem that might be solved using a statistical model-based approach where not only is the importance of the individual protein explicit, they are combined into a readily interpretable classification rule without relying on a black box approach. Here we incorporate statistical dimension reduction techniques Partial Least Squares (PLS) and Principal Components Analysis (PCA) followed by both statistical and machine learning classification methods, and compared them to a popular machine learning technique, Support Vector Machines (SVM). Both PLS and SVM demonstrate strong utility for proteomic classification problems.
Resumo:
This CDROM includes PDFs of presentations on the following topics: "TXDOT Revenue and Expenditure Trends;" "Examine Highway Fund Diversions, & Benchmark Texas Vehicle Registration Fees;" "Evaluation of the JACK Model;" "Future highway construction cost trends;" "Fuel Efficiency Trends and Revenue Impact"