896 resultados para Controlled conditions
Resumo:
Background Older people have higher rates of hospital admission than the general population and higher rates of readmission due to complications and falls. During hospitalisation, older people experience significant functional decline which impairs their future independence and quality of life. Acute hospital services comprise the largest section of health expenditure in Australia and prevention or delay of disease is known to produce more effective use of services. Current models of discharge planning and follow-up care, however, do not address the need to prevent deconditioning or functional decline. This paper describes the protocol of a randomised controlled trial which aims to evaluate innovative transitional care strategies to reduce unplanned readmissions and improve functional status, independence, and psycho-social well-being of community-based older people at risk of readmission. Methods/Design The study is a randomised controlled trial. Within 72 hours of hospital admission, a sample of older adults fitting the inclusion/exclusion criteria (aged 65 years and over, admitted with a medical diagnosis, able to walk independently for 3 meters, and at least one risk factor for readmission) are randomised into one of four groups: 1) the usual care control group, 2) the exercise and in-home/telephone follow-up intervention group, 3) the exercise only intervention group, or 4) the in-home/telephone follow-up only intervention group. The usual care control group receive usual discharge planning provided by the health service. In addition to usual care, the exercise and in-home/telephone follow-up intervention group receive an intervention consisting of a tailored exercise program, in-home visit and 24 week telephone follow-up by a gerontic nurse. The exercise only and in-home/telephone follow-up only intervention groups, in addition to usual care receive only the exercise or gerontic nurse components of the intervention respectively. Data collection is undertaken at baseline within 72 hours of hospital admission, 4 weeks following hospital discharge, 12 weeks following hospital discharge, and 24 weeks following hospital discharge. Outcome assessors are blinded to group allocation. Primary outcomes are emergency hospital readmissions and health service use, functional status, psychosocial well-being and cost effectiveness. Discussion The acute hospital sector comprises the largest component of health care system expenditure in developed countries, and older adults are the most frequent consumers. There are few trials to demonstrate effective models of transitional care to prevent emergency readmissions, loss of functional ability and independence in this population following an acute hospital admission. This study aims to address that gap and provide information for future health service planning which meets client needs and lowers the use of acute care services.
Resumo:
The lymphedema diagnostic method used in descriptive or intervention studies may influence results found. The purposes of this work were to compare baseline lymphedema prevalence in the physical activity and lymphedema (PAL) trial cohort and to subsequently compare the effect of the weight-lifting intervention on lymphedema, according to four standard diagnostic methods. The PAL trial was a randomized controlled intervention study, involving 295 women who had previously been treated for breast cancer, and evaluated the effect of 12 months of weight lifting on lymphedema status. Four diagnostic methods were used to evaluate lymphedema outcomes: (i) interlimb volume difference through water displacement, (ii) interlimb size difference through sum of arm circumferences, (iii) interlimb impedance ratio using bioimpedance spectroscopy, and (iv) a validated self-report survey. Of the 295 women who participated in the PAL trial, between 22 and 52% were considered to have lymphedema at baseline according to the four diagnostic criteria used. No between-group differences were noted in the proportion of women who had a change in interlimb volume, interlimb size, interlimb ratio, or survey score of ≥5, ≥5, ≥10%, and 1 unit, respectively (cumulative incidence ratio at study end for each measure ranged between 0.6 and 0.8, with confidence intervals spanning 1.0). The variation in proportions of women within the PAL trial considered to have lymphoedema at baseline highlights the potential impact of the diagnostic criteria on population surveillance regarding prevalence of this common morbidity of treatment. Importantly though, progressive weight lifting was shown to be safe for women following breast cancer, even for those at risk or with lymphedema, irrespective of the diagnostic criteria used.
Resumo:
Background: Radiation-induced skin reaction (RISR) is one of the most common and distressing side effects of radiotherapy in patients with cancer. It is featured with swelling, redness, itching, pain, breaks in skin, discomfort, and a burning sensation. There is a lack of convincing evidence supporting any single practice in the prevention or management of RISR. Methods/Designs: This double-blinded randomised controlled trial aims to investigate the effects of a natural oil-based emulsion containing allantoin (as known as Moogoo Udder Cream®) versus aqueous cream in reducing RISR, improving pain, itching and quality of life in this patient group. One group will receive Moogoo Udder Cream®. Another group will receive aqueous cream. Outcome measures will be collected using patient self-administered questionnaire, interviewer administered questionnaire and clinician assessment at commencement of radiotherapy, weekly during radiotherapy, and four weeks after the completion of radiotherapy. Discussion: Despite advances of radiologic advances and supportive care, RISR are still not well managed. There is a lack of efficacious interventions in managing RISR. While anecdotal evidence suggests that Moogoo Udder Cream® may be effective in managing RISR, research is needed to substantiate this claim. This paper presents the design of a double blind randomised controlled trial that will evaluate the effects of Moogoo Udder Cream® versus aqueous cream for managing in RISR in patients with cancer. Trial registration: ACTRN 12612000568819
Resumo:
Background: Most skin cancers are preventable by encouraging consistent use of sun protective behaviour. In Australia, adolescents have high levels of knowledge and awareness of the risks of skin cancer but exhibit significantly lower sun protection behaviours than adults. There is limited research aimed at understanding why people do or do not engage in sun protective behaviour, and an associated absence of theory-based interventions to improve sun safe behaviour. This paper presents the study protocol for a school-based intervention which aims to improve the sun safe behaviour of adolescents. Methods/design: Approximately 400 adolescents (aged 12-17 years) will be recruited through Queensland, Australia public and private schools and randomized to the intervention (n = 200) or 'wait-list' control group (n = 200). The intervention focuses on encouraging supportive sun protective attitudes and beliefs, fostering perceptions of normative support for sun protection behaviour, and increasing perceptions of control/self-efficacy over using sun protection. It will be delivered during three × one hour sessions over a three week period from a trained facilitator during class time. Data will be collected one week pre-intervention (Time 1), and at one week (Time 2) and four weeks (Time 3) post-intervention. Primary outcomes are intentions to sun protect and sun protection behaviour. Secondary outcomes include attitudes toward performing sun protective behaviours (i.e., attitudes), perceptions of normative support to sun protect (i.e., subjective norms, group norms, and image norms), and perceived control over performing sun protective behaviours (i.e., perceived behavioural control). Discussion: The study will provide valuable information about the effectiveness of the intervention in improving the sun protective behaviour of adolescents.
Resumo:
The aetiology behind overuse injuries such as stress fractures is complex and multi-factorial. In sporting events where the loading is likely to be uneven (e.g. hurdling and jumps), research has suggested that the frequency of stress fractures seems to favour the athlete’s dominant limb. The tendency for an individual to have a preferred limb for voluntary motor acts makes limb selection a possible factor behind the development of unilateral overuse injuries, particularly when repeatedly used during high loading activities. The event of sprint hurdling is well suited for the study of loading asymmetry as the hurdling technique is repetitive and the limb movement asymmetrical. Of relevance to this study is the high incidence of Navicular Stress Fractures (NSF) in hurdlers, with suggestions there is a tendency for the fracture to develop in the trail leg foot, although this is not fully accepted. The Ground Reaction Force (GRF) with each foot contact is influenced by the hurdle action, with research finding step-to-step loading variations. However, it is unknown if this loading asymmetry extends to individual forefoot joints, thereby influencing stress fracture development. The first part of the study involved a series of investigations using a commercially available matrix style in-shoe sensor system (FscanTM, Tekscan Inc.). The suitability of insole sensor systems and custom made discrete sensors for use in hurdling-related training activities was assessed. The methodology used to analyse foot loading with each technology was investigated. The insole and discrete sensors systems tested proved to be unsuitable for use during full pace hurdling. Instead, a running barrier task designed to replicate the four repetitive foot contacts present during hurdling was assessed. This involved the clearance of a series of 6 barriers (low training hurdles), place in a straight line, using 4 strides between each. The second part of the study involved the analysis of "inter-limb" and "within foot loading asymmetries" using stance duration as well as vertical GRF under the Hallux (T1), the first metatarsal head (M1) and the central forefoot peak pressure site (M2), during walking, running, and running with barrier clearances. The contribution to loading asymmetry that each of the four repetitive foot contacts made during a series of barrier clearances was also assessed. Inter-limb asymmetry, in forefoot loading, occurred at discrete forefoot sites in a non-uniform manner across the three gait conditions. When the individual barrier foot contacts were compared, the stance duration was asymmetrical and the proportion of total forefoot load at M2 was asymmetrical. There were no significant differences between the proportion of forefoot load at M1, compared to M2; for any of the steps involved in the barrier clearance. A case study testing experimental (discrete) sensors during full pace sprinting and hurdling found that during both gait conditions, the trail limb experienced the greater vertical GRF at M1 and M2. During full pace hurdling, increased stance duration and vertical loading was a characteristic of the trail limb hurdle foot contacts. Commercially available in-shoe systems are not suitable for on field assessment of full pace hurdling. For the use of discrete sensor technology to become commonplace in the field, more robust sensors need to be developed.
Resumo:
Abstract. Fire safety of light gauge cold-formed steel frame (LSF) stud walls is significant in the design of buildings. In this research, finite element thermal models of both the traditional LSF wall panels with cavity insulation and the new LSF composite wall panels were developed to simulate their thermal behaviour under standard and real design fire conditions. Suitable thermal properties were proposed for plasterboards and insulations based on laboratory tests and literature review. The developed models were then validated by comparing their results with available fire test results. This paper presents the details of the developed finite element models of load bearing LSF wall panels and the thermal analysis results. It shows that finite element models can be used to simulate the thermal behaviour of load bearing LSF walls with varying configurations of insulations and plasterboards. Failure times of load bearing LSF walls were also predicted based on the results from finite element thermal analyses.
Resumo:
There are an increasing number of compression systems available for treatment of venous leg ulcers and limited evidence on the relative effectiveness of these systems. The purpose of this study was to conduct a randomised controlled trial to compare the effectiveness of a 4-layer compression bandage system with Class 3 compression hosiery on healing and quality of life in patients with venous leg ulcers. Data were collected from 103 participants on demographics, health, ulcer status, treatments, pain, depression and quality of life for 24 weeks. After 24 weeks, 86% of the 4-layer bandage group and 77% of the hosiery group were healed (p=0.24). Median time to healing for the bandage group was 10 weeks, in comparison to 14 weeks for the hosiery group (p=0.018). Cox proportional hazards regression found participants in the 4-layer system were 2.1 times (95% CI 1.2–3.5) more likely to heal than those in hosiery, while longer ulcer duration, larger ulcer area and higher depression scores significantly delayed healing. No differences between groups were found in quality of life or pain measures. Findings indicate these systems were equally effective in healing patients by 24 weeks, however a 4-layer system may produce a more rapid response.
Resumo:
Increased or fluctuating resources may facilitate opportunities for invasive exotic plants to dominate. This hypothesis does not, however, explain how invasive species succeed in regions characterized by low resource conditions or how these species persist in the lulls between high resource periods. We compare the growth of three co-occurring C4 perennial bunchgrasses under low resource conditions: an exotic grass, Eragrostis curvula (African lovegrass) and two native grasses, Themeda triandra and Eragrostis sororia. We grew each species over 12 weeks under low nutrients and three low water regimes differentiated by timing: continuous, pulsed, and mixed treatments (switched from continuous to pulsed and back to continuous). Over time, we measured germination rates, time to germination (first and second generations), height, root biomass, vegetative biomass, and reproductive biomass. Contrary to our expectations that the pulsed watering regime would favor the invader, water-supply treatments had little significant effect on plant growth. We did find inherent advantages in a suite of early colonization traits that likely favor African lovegrass over the natives including faster germination speed, earlier flowering times, faster growth rates and from 2 weeks onward it was taller. African lovegrass also showed similar growth allocation strategies to the native grasses in terms of biomass levels belowground, but produced more vegetative biomass than kangaroo grass. Overall our results suggest that even under low resource conditions invasive plant species like African lovegrass can grow similarly to native grasses, and for some key colonization traits, like germination rate, perform better than natives.
Resumo:
It is very difficult to selectively oxidise stable compounds such as toluene and xylenes to useful chemicals with molecular oxygen (O 2) under moderate conditions. To achieve high conversion and less over-oxidised products, a new class of photocatalysts, metal hydroxide nanoparticles grafted with alcohols, is devised. They can efficiently oxidise alkyl aromatic compounds with O 2 using visible or ultraviolet light or even sunlight to generate the corresponding aldehydes, alcohols and acids at ambient temperatures and give very little over-oxidation. For example toluene can be oxidised with a 23% conversion after a 48-hour exposure to sunlight with 85% of the product being benzaldehyde, and only a trace of CO 2.The surface complexes grafted onto metal hydroxides can absorb light, generating free radicals on the surface, which then initiate aerobic oxidation of the stable alkyl aromatic molecules with high product selectivity. This mechanism is distinctly different from those of any known catalysts. The use of the new photocatalysts as a controlled means to generate surface radicals through light excitation allows us to drive the production of fine organic chemicals at ambient temperatures with sunlight. The process with the new photocatalysts is especially valuable for temperature-sensitive syntheses and a greener process than many conventional thermal reactions. © 2012 The Royal Society of Chemistry.
Numerical and experimental studies of cold-formed steel floor systems under standard fire conditions
Resumo:
Light gauge cold-formed steel frame (LSF) structures are increasingly used in industrial, commercial and residential buildings because of their non-combustibility, dimensional stability, and ease of installation. A floor-ceiling system is an example of its applications. LSF floor-ceiling systems must be designed to serve as fire compartment boundaries and provide adequate fire resistance. Fire rated floor-ceiling assemblies formed with new materials and construction methodologies have been increasingly used in buildings. However, limited research has been undertaken in the past and hence a thorough understanding of their fire resistance behaviour is not available. Recently a new composite panel in which an external insulation layer is used between two plasterboards has been developed at QUT to provide a higher fire rating to LSF floors under standard fire conditions. But its increased fire rating could not be determined using the currently available design methods. Research on LSF floor systems under fire conditions is relatively recent and the behaviour of floor joists and other components in the systems is not fully understood. The present design methods thus require the use of expensive fire protection materials to protect them from excessive heat increase during a fire. This leads to uneconomical and conservative designs. Fire rating of these floor systems is provided simply by adding more plasterboard sheets to the steel joists and such an approach is totally inefficient. Hence a detailed fire research study was undertaken into the structural and thermal performance of LSF floor systems including those protected by the new composite panel system using full scale fire tests and extensive numerical studies. Experimental study included both the conventional and the new steel floor-ceiling systems under structural and fire loads using a gas furnace designed to deliver heat in accordance with the standard time- temperature curve in AS 1530.4 (SA, 2005). Fire tests included the behavioural and deflection characteristics of LSF floor joists until failure as well as related time-temperature measurements across the section and along the length of all the specimens. Full scale fire tests have shown that the structural and thermal performance of externally insulated LSF floor system was superior than traditional LSF floors with or without cavity insulation. Therefore this research recommends the use of the new composite panel system for cold-formed LSF floor-ceiling systems. The numerical analyses of LSF floor joists were undertaken using the finite element program ABAQUS based on the measured time-temperature profiles obtained from fire tests under both steady state and transient state conditions. Mechanical properties at elevated temperatures were considered based on the equations proposed by Dolamune Kankanamge and Mahendran (2011). Finite element models were calibrated using the full scale test results and used to further provide a detailed understanding of the structural fire behaviour of the LSF floor-ceiling systems. The models also confirmed the superior performance of the new composite panel system. The validated model was then used in a detailed parametric study. Fire tests and the numerical studies showed that plasterboards provided sufficient lateral restraint to LSF floor joists until their failure. Hence only the section moment capacity of LSF floor joists subjected to local buckling effects was considered in this research. To predict the section moment capacity at elevated temperatures, the effective section modulus of joists at ambient temperature is generally considered adequate. However, this research has shown that it leads to considerable over- estimation of the local buckling capacity of joist subject to non-uniform temperature distributions under fire conditions. Therefore new simplified fire design rules were proposed for LSF floor joist to determine the section moment capacity at elevated temperature based on AS/NZS 4600 (SA, 2005), NAS (AISI, 2007) and Eurocode 3 Part 1.3 (ECS, 2006). The accuracy of the proposed fire design rules was verified with finite element analysis results. A spread sheet based design tool was also developed based on these design rules to predict the failure load ratio versus time, moment capacity versus time and temperature for various LSF floor configurations. Idealised time-temperature profiles of LSF floor joists were developed based on fire test measurements. They were used in the detailed parametric study to fully understand the structural and fire behaviour of LSF floor panels. Simple design rules were also proposed to predict both critical average joist temperatures and failure times (fire rating) of LSF floor systems with various floor configurations and structural parameters under any given load ratio. Findings from this research have led to a comprehensive understanding of the structural and fire behaviour of LSF floor systems including those protected by the new composite panel, and simple design methods. These design rules were proposed within the guidelines of the Australian/New Zealand, American and European cold- formed steel structures standard codes of practice. These may also lead to further improvements to fire resistance through suitable modifications to the current composite panel system.
Resumo:
Fire safety of buildings has been recognised as very important by the building industry and the community at large. Traditionally, increased fire rating is provided by simply adding more plasterboards to light gauge steel frame (LSF) walls, which is inefficient. Many research studies have been undertaken to investigate the thermal behaviour of traditional LSF stud wall systems under standard fire conditions. However, no research has been undertaken on the thermal behaviour of LSF stud walls using the recently proposed composite panel. Extensive fire testing of both non-load bearing and load bearing wall panels was conducted in this research based on the standard time-temperature curve in AS1530.4. Three groups of LSF wall specimens were tested with no insulation, cavity insulation and the new composite panel based on an external insulation layer between plasterboards. This paper presents the details of this experimental study into the thermal performance of non-load bearing walls lined with various configurations of plasterboard and insulation. Extensive descriptive and numerical results of the tested non-load bearing wall panels given in this paper provide a thorough understanding of their thermal behaviour, and valuable time-temperature data that can be used to validate numerical models. Test results showed that the innovative composite stud wall systems outperformed the traditional stud wall systems in terms of their thermal performance, giving a much higher fire rating.