990 resultados para Consensus processes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Convergence analysis of consensus algorithms is revisited in the light of the Hilbert distance. The Lyapunov function used in the early analysis by Tsitsiklis is shown to be the Hilbert distance to consensus in log coordinates. Birkhoff theorem, which proves contraction of the Hilbert metric for any positive homogeneous monotone map, provides an early yet general convergence result for consensus algorithms. Because Birkhoff theorem holds in arbitrary cones, we extend consensus algorithms to the cone of positive definite matrices. The proposed generalization finds applications in the convergence analysis of quantum stochastic maps, which are a generalization of stochastic maps to non-commutative probability spaces. ©2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper proposes a synchronization mechanism in a set of nonlinear oscillators interconnected through a communication network. In contrast to many existing results, we do not employ strong, diffusive couplings between the individual oscillators. Instead, each individual oscillator is weakly forced by a linear resonator system. The resonator systems are synchronized using results from consensus theory. The synchronized resonator systems force the frequencies of the nonlinear oscillators to a constant frequency and thereby yield synchronization of the oscillators. We prove this result using the theory of small forcings of stable oscillators. This synchronization scheme allows for synchronization of nonlinear oscillators over uniformly connected communication graphs. ©2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper considers distributed consensus algorithms for agents evolving on a connected compact homogeneous (CCH) manifold. The agents track no external reference and communicate their relative state according to an interconnection graph. The paper first formalizes the consensus problem for synchronization (i.e. maximizing the consensus) and balancing (i.e. minimizing the consensus); it thereby introduces the induced arithmetic mean, an easily computable mean position on CCH manifolds. Then it proposes and analyzes various consensus algorithms on manifolds: natural gradient algorithms which reach local consensus equilibria; an adaptation using auxiliary variables for almost-global synchronization or balancing; and a stochastic gossip setting for global synchronization. It closes by investigating the dependence of synchronization properties on the attraction function between interacting agents on the circle. The theory is also illustrated on SO(n) and on the Grassmann manifolds. ©2009 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper considers distributed consensus algorithms that involve N agents evolving on a connected compact homogeneous manifold. The agents track no external reference and communicate their relative state according to a communication graph. The consensus problem is formulated in terms of the extrema of a cost function. This leads to efficient gradient algorithms to synchronize (i.e., maximizing the consensus) or balance (i.e., minimizing the consensus) the agents; a convenient adaptation of the gradient algorithms is used when the communication graph is directed and time-varying. The cost function is linked to a specific centroid definition on manifolds, introduced here as the induced arithmetic mean, that is easily computable in closed form and may be of independent interest for a number of manifolds. The special orthogonal group SO (n) and the Grassmann manifold Grass (p, n) are treated as original examples. A link is also drawn with the many existing results on the circle. © 2009 Society for Industrial and Applied Mathematics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper considers the problem of autonomous synchronization of attitudes in a swarm of spacecraft. Building upon our recent results on consensus on manifolds, we model the spacecraft as particles on SO(3) and drive these particles to a common point in SO(3). Unlike the Euler angle or quaternion descriptions, this model suffers no singularities nor double-points. Our approach is fully cooperative and autonomous: we use no leader nor external reference. We present two types of control laws, in terms of applied control torques, that globally drive the swarm towards attitude synchronization: one that requires tree-like or all-to-all inter-satellite communication (most efficient) and one that works with nearly arbitrary communication (most robust).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method is proposed to characterize contraction of a set through orthogonal projections. For discrete-time multi-agent systems, quantitative estimates of convergence (to a consensus) rate are provided by means of contracting convex sets. Required convexity for the sets that should include the values that the transition maps of agents take is considered in a more general sense than that of Euclidean geometry. © 2007 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a methodology to stabilize relative equilibria in a model of identical, steered particles moving in three-dimensional Euclidean space. Exploiting the Lie group structure of the resulting dynamical system, the stabilization problem is reduced to a consensus problem. We first derive the stabilizing control laws in the presence of all-to-all communication. Providing each agent with a consensus estimator, we then extend the results to a general setting that allows for unidirectional and time-varying communication topologies. © 2007 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the inverse reinforcement learning problem, that is, the problem of learning from, and then predicting or mimicking a controller based on state/action data. We propose a statistical model for such data, derived from the structure of a Markov decision process. Adopting a Bayesian approach to inference, we show how latent variables of the model can be estimated, and how predictions about actions can be made, in a unified framework. A new Markov chain Monte Carlo (MCMC) sampler is devised for simulation from the posterior distribution. This step includes a parameter expansion step, which is shown to be essential for good convergence properties of the MCMC sampler. As an illustration, the method is applied to learning a human controller.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a conceptually novel structured prediction model, GPstruct, which is kernelized, non-parametric and Bayesian, by design. We motivate the model with respect to existing approaches, among others, conditional random fields (CRFs), maximum margin Markov networks (M3N), and structured support vector machines (SVMstruct), which embody only a subset of its properties. We present an inference procedure based on Markov Chain Monte Carlo. The framework can be instantiated for a wide range of structured objects such as linear chains, trees, grids, and other general graphs. As a proof of concept, the model is benchmarked on several natural language processing tasks and a video gesture segmentation task involving a linear chain structure. We show prediction accuracies for GPstruct which are comparable to or exceeding those of CRFs and SVMstruct.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a combined analytical and numerical study of the early stages (sub-100-fs) of the nonequilibrium dynamics of photoexcited electrons in graphene. We employ the semiclassical Boltzmann equation with a collision integral that includes contributions from electron-electron (e-e) and electron-optical phonon interactions. Taking advantage of circular symmetry and employing the massless Dirac fermion (MDF) Hamiltonian, we are able to perform an essentially analytical study of the e-e contribution to the collision integral. This allows us to take particular care of subtle collinear scattering processes - processes in which incoming and outgoing momenta of the scattering particles lie on the same line - including carrier multiplication (CM) and Auger recombination (AR). These processes have a vanishing phase space for two-dimensional MDF bare bands. However, we argue that electron-lifetime effects, seen in experiments based on angle-resolved photoemission spectroscopy, provide a natural pathway to regularize this pathology, yielding a finite contribution due to CM and AR to the Coulomb collision integral. Finally, we discuss in detail the role of physics beyond the Fermi golden rule by including screening in the matrix element of the Coulomb interaction at the level of the random phase approximation (RPA), focusing in particular on the consequences of various approximations including static RPA screening, which maximizes the impact of CM and AR processes, and dynamical RPA screening, which completely suppresses them. © 2013 American Physical Society.