969 resultados para Condensed Matter - Mesoscale and Nanoscale Physics
Resumo:
The electronic stopping cross section (SCS) of Al2O3 for proton beams is studied both experimentally and theoretically. The measurements are made for proton energies from 40 keV up to 1 MeV, which cover the maximum stopping region, using two experimental methods, the transmission technique at low energies (similar to 40-175 keV) and the Rutherford backscattering at high energies (approximate to 190-1000 keV). These new data reveal an increment of 16% in the SCS around the maximum stopping with respect to older measurements. The theoretical study includes electronic stopping power calculations based on the dielectric formalism and on the transport cross section (TCS) model to describe the electron excitations of Al2O3. The non-linear TCS calculations of the SCS for valence electrons together with the generalized oscillator strengths (GOS) model for the core electrons compare well with the experimental data in the whole range of energies considered.
Resumo:
Pulse repetition rates and the number of laser pulses are among the most important parameters that do affect the analysis of solid materials by laser induced breakdown spectroscopy, and the knowledge of their effects is of fundamental importance for suggesting analytical strategies when dealing with laser ablation processes of polymers. In this contribution, the influence of these parameters in the ablated mass and in the features of craters was evaluated in polypropylene and high density polyethylene plates containing pigment-based PbCrO4. Surface characterization and craters profile were carried out by perfilometry and scanning electron microscopy. Area, volume and profile of craters were obtained using Taylor Map software. A laser induced breakdown spectroscopy system consisted of a Q-Switched Nd:YAG laser (1064 nm, 5 ns) and an Echelle spectrometer equipped with ICCD detector were used. The evaluated operating conditions consisted of 10, 25 and 50 laser pulses at 1, 5 and 10 Hz, 250 mJ/pulse (85 J cm(-2)), 2 mu s delay time and 6 mu s integration time gate. Differences in the topographical features among craters of both polymers were observed. The decrease in the repetition rate resulted in irregular craters and formation of edges, especially in polypropylene sample. The differences in the topographical features and ablated masses were attributed to the influence of the degree of crystallinity, crystalline melting temperature and glass transition temperature in the ablation process of the high density polyethylene and polypropylene. It was also observed that the intensities of chromium and lead emission signals obtained at 10 Hz were two times higher than at 5 Hz by keeping the number of laser pulses constant. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
We investigate the influence of sub-Ohmic dissipation on randomly diluted quantum Ising and rotor models. The dissipation causes the quantum dynamics of sufficiently large percolation clusters to freeze completely. As a result, the zero-temperature quantum phase transition across the lattice percolation threshold separates an unusual super-paramagnetic cluster phase from an inhomogeneous ferromagnetic phase. We determine the low-temperature thermodynamic behavior in both phases, which is dominated by large frozen and slowly fluctuating percolation clusters. We relate our results to the smeared transition scenario for disordered quantum phase transitions, and we compare the cases of sub-Ohmic, Ohmic, and super-Ohmic dissipation.
Resumo:
The competition between confinement potential fluctuations and band-gap renormalization (BGR) in GaAs/AlxGa1-xAs quantum wells grown on [1 0 0] and [3 1 1]A GaAs substrates is evaluated. The results clearly demonstrate the coexistence of the band-tail states filling related to potential fluctuations and the band-gap renormalization caused by an increase in the density of photogenerated carriers during the photoluminescence (PL) experiments. Both phenomena have strong influence on temperature dependence of the PL-peak energy (E-PL(T)). As the photon density increases, the E-PL can shift to either higher or lower energies, depending on the sample temperature. The temperature at which the displacement changes from a blueshift to a redshift is governed by the magnitude of the potential fluctuations and by the variation of BGR with excitation density. A simple band-tail model with a Gaussian-like distribution of the density of state was used to describe the competition between the band-tail filling and the BGR effects on E-PL(T). (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We present a family of networks whose local interconnection topologies are generated by the root vectors of a semi-simple complex Lie algebra. Cartan classification theorem of those algebras ensures those families of interconnection topologies to be exhaustive. The global arrangement of the network is defined in terms of integer or half-integer weight lattices. The mesh or torus topologies that network millions of processing cores, such as those in the IBM BlueGene series, are the simplest member of that category. The symmetries of the root systems of an algebra, manifested by their Weyl group, lends great convenience for the design and analysis of hardware architecture, algorithms and programs.
Resumo:
Dispersion of photoluminescent rare earth metal complexes in polymer matrices is of great interest due to the possibility of avoiding the saturation of the photoluminescent signal. The possibility of using a natural ionic conducting polymer matrix was investigated in this study. Samples of agar-based electrolytes containing europium picrate were prepared and characterized by physical and chemical analyses. The FTIR spectra indicated strong interaction of agar O-H and 3.6-anhydro-galactose C-O groups with glycerol and europium picrate. The DSC analyses revealed no glass transition temperature of the samples in the -60 to 250 degrees C range. From the thermogravimetry (TG), a thermal stability of the samples of up to 180 degrees C was stated. The membranes were subjected to ionic conductivity measurement, which provided the values of 2.6 x 10(-6) S/cm for the samples with acetic acid and 1.6 x 10(-5) S/cm for the samples without acetic acid. Moreover, the temperature-dependent ionic conductivity measurements revealed both Arrhenius and VTF models of the conductivity depending on the sample. Surface visualization through scanning electron microscopy (SEM) demonstrated good uniformity. The samples were also applied in small electrochromic devices and showed good electrochemical stability. The present work confirmed that these materials may perform as satisfactory multifunctional component layers in the field of electrochemical devices. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Loaded microspheres with a silicon (IV) phthalocyanine derivative (NzPC) acting as a photosensitizer were prepared from polyhydroxybutyrate-co-valerate (PHBHV) and poly(ecaprolactone) (PCL) polymers using the emulsification solvent evaporation method (EE). The aim of our study was to prepare two systems of these biodegradable PHBHV/PCL microspheres. The first one containing only photosensitizer previously incorporated in the PHBHV and poly(ecaprolactone) (PCL) microspheres and the second one with the post magnetization of the DDS with magnetic nanoparticles. Magnetic fluid is successfully used for controlled incorporation of nanosized magnetic particles within the micron-sized template. This is the first time that we could get a successful pos incorporation of nanosized magnetic particles in a previously-prepared polymeric template. This procedure opens a great number of possibilities of post-functionalization of polymeric micro or nanoparticles with different bioactive materials. The NzPC release profile of the systems is ideal for PDT, the zeta potential and the size particle are stable upon aging in time. In vitro studies were evaluated using gingival fibroblastic cell line. The dark citotoxicity, the phototoxicity and the AC magnetic field assays of the as-prepared nanomagnetic composite were evaluated and the cellular viability analyzed by the classical test of MU.
Resumo:
We performed ab initio calculations of the electronic structures of bulk CdSe and CdTe, and their interface band alignments on the CdSe in-plane lattice parameters. For this, we employed the LDA-1/2 self-energy correction scheme [L.G. Ferreira, M. Marques, L.K. Teles, Phys. Rev. B 78 (2008) 125116] to obtain corrected band gaps and band offsets. Our calculations include the spin-orbit effects for the bulk cases, which have shown to be of importance for the equilibrium systems and are possibly degraded in these strained semiconductors. Therefore, the SO showed reduced importance for the band alignment of this particular system. Moreover, the electronic structure calculated along the transition region across the CdSe/CdTe interface shows an interesting non-monotonic variation of the band gap in the range 0.8-1.8 eV, which may enhance the absorption of light for corresponding frequencies at the interface between these two materials in photovoltaic applications. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We study a strongly interacting "quantum dot 1" and a weakly interacting "dot 2" connected in parallel to metallic leads. Gate voltages can drive the system between Kondo-quenched and non-Kondo free-moment phases separated by Kosterlitz-Thouless quantum phase transitions. Away from the immediate vicinity of the quantum phase transitions, the physical properties retain signatures of first-order transitions found previously to arise when dot 2 is strictly noninteracting. As interactions in dot 2 become stronger relative to the dot-lead coupling, the free moment in the non-Kondo phase evolves smoothly from an isolated spin-one-half in dot 1 to a many-body doublet arising from the incomplete Kondo compensation by the leads of a combined dot spin-one. These limits, which feature very different spin correlations between dot and lead electrons, can be distinguished by weak-bias conductance measurements performed at finite temperatures.
Resumo:
This work presents a comprehensive study about the influence of Ba-substitution on the structural and ferroelectric properties of Pb1-xBaxZr0.40Ti0.60O3 (PBZT) ceramic system. Pb1-xBaxZr0.40Ti0.60O3 ceramic samples were then prepared by solid state reaction method and characterized as a function of composition and temperature by X-ray diffraction (XRD) and impedance spectroscopy techniques. The dielectric measurements show that the substitution of Pb2+ for Ba2+ ions leads to a diffuse behavior of the dielectric permittivity curves for all samples and that only the x = 0.50 sample presents a typical relaxor behavior. In good agreement with dielectric measurements, the structural phase transition study showed a phase transition from a tetragonal structure with P4mm space group to a cubic structure with Pm-3m space group for all samples, except for the x = 0.50 sample were a cubic structure was observed in the complete temperature interval measured.
Flux-Line-Lattice Melting and Upper Critical Field of Bi1.65Pb0.35Sr2Ca2Cu3O10+delta Ceramic Samples
Resumo:
We have conducted magnetoresistance measurements rho(T,H) in applied magnetic fields up to 18 T in Bi1.65Pb0.35Sr2Ca2Cu3O10+delta ceramic samples which were subjected to different uniaxial compacting pressures. The anisotropic upper critical fields H (c2)(T) were extracted from the rho(T,H) data, yielding and the out-of-plane superconducting coherence length xi (c) (0)similar to 3 . We have also estimated and xi (ab) (0) similar to 90 . In addition to this, a flux-line-lattice (FLL) melting temperature T (m) has been identified as a second peak in the derivative of the magnetoresistance d rho/dT data close to the superconducting transition temperature. An H (m) vs. T phase diagram was constructed and the FLL boundary lines were found to obey a temperature dependence H (m) ae(T (c) /T-1) (alpha) , where alpha similar to 2 for the sample subjected to the higher compacting pressure. A reasonable value of the Lindemann parameter c (L) similar to 0.29 has been found for all samples studied.
Resumo:
In this paper, the combination of the Dynamic Threshold (DT) voltage technique with a non-planar structure is experimentally studied in triple-gate FinFETs. The drain current, transconductance, resistance, threshold voltage, subthreshold swing and Drain Induced Barrier Lowering (DIBL) will be analyzed in the DT mode and the standard biasing configuration. Moreover, for the first time, the important figures of merit for the analog performance such as transconductance-over-drain current, output conductance. Early voltage and intrinsic voltage gain will be studied experimentally and through three-dimensional (3-D) numerical simulations for different channel doping concentrations in triple-gate DTMOS FinFETs. The results indicate that the DTMOS FinFETs always yield superior characteristic; and larger transistor efficiency. In addition, DTMOS devices with a high channel doping concentration exhibit much better analog performance compared to the normal operation mode, which is desirable for high performance low-power/low-voltage applications. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This work studies the gate-induced drain leakage (GIDL) in p- and n-MuGFET structures with different TiN metal gate thickness and high-k gate dielectrics. As a result of this analysis, it was observed that a thinner TiN metal gate showed a larger GIDL due to the different gate oxide thickness and a reduced metal gate work function. In addition, replacing SiON by a high-k dielectric (HfSiON) results for nMuGFETs in a decrease of the GIDL On the other hand, the impact of the gate dielectric on the GIDL for p-channel MuGFETs is marginal. The effect of the channel width was also studied, whereby narrow fin devices exhibit a reduced GIDL current in spite of the larger vertical electric field expected for these devices. Finally, comparing the effect of the channel type, an enhanced GIDL current for pMuGFET devices was observed. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The studies of niobium after electrochemical polishing EP in sulfuric-methanesulfonic acid mixture were performed. The NbOx/Nb surface was studied by SEM/EDX and XPS methods to find out the chemical composition of the oxygen-induced structures. Specifically the XPS results obtained after EP treatment indicate prevailing part of oxygen with niobium oxides on the sample surface. In order to correctly interpret these structures the photoelectron spectra of main niobium oxides were analyzed, and the spectra of internal Nb 3d and O 1s electronic states and valence band spectra were measured for them. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
Several types of alumina were synthesized from sodium aluminate (NaAlO2) by precipitation with sulfuric acid (H2SO4) and subsequently calcination at 500 degrees C to obtain gamma-Al2O3. The precursor aluminate was derived from aluminum scrap. The various gamma-Al2O3 synthesized were characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), adsorption-desorption of N-2 (S-BET) and scanning electron microscopy (SEM). XRD revealed that distinct phases of Al2O3 were formed during thermal treatment. Moreover, it was observed that conditions of synthesis (pH, aging time and temperature) strongly affect the physicochemical properties of the alumina. A high-surface-area alumina (371 m(2) g(-1)) was synthesized under mild conditions, from inexpensive raw materials. These aluminas were tested for the adsorption of Cd(II), Zn(II) and Pb(II) from aqueous solution at toxic metal concentrations, and isotherms were determined. (C) 2012 Elsevier B.V. All rights reserved.