994 resultados para Concrete block
Resumo:
This paper reports a study carried out to assess the impact of the use of self-compacting concrete (SCC) on bond and interfacial properties around steel reinforcement in practical concrete element. The pull-out tests were carried out to determine bond strength between reinforcing steel bar and concrete, and the depth-sensing nano-indentation technique was used to evaluate the elastic modulus and micro-strength of the interracial transition zone (ITZ) around steel reinforcement. The bond and interracial properties around deformed steel bars in different SCC mixes with strength grades of 35 MPa and 60 MPa (C35, C60) were examined together with those in conventional vibrated reference concrete with the same strength grades. The results showed that the maximum bond strength decreased when the diameter of the steel bar increased from 12 to 20 mm. The normalised bond strengths of the SCC mixes were found to be about 10-40% higher than those of the reference mixes for both bar diameters (12 and 20 mm). The study of the interfacial properties revealed that the elastic modulus and the micro-strength of the ITZ were lower on the bottom side of a horizontal steel bar than on the top side, particularly for the vibrated reference concrete. The difference of ITZ properties between top and bottom side of the horizontal steel bar appeared to be less pronounced for the SCC mixes than for the corresponding reference mixes.
Resumo:
Ettringite and thaumasite can be found among the deterioration products of cementitious materials exposed to sulfate and hydrochloric attack. The results of a test program to investigate the acid resistance of self-compacting concrete (SCC) and conventional concrete (CC), immersed up to 18 weeks at 20°C in sulfuric and hydrochloric acid solutions, are described. The SCC was prepared with 47% carboniferous limestone powder, as a replacement for cement, and an ordinary portland cement. The CC was prepared with portland cement only. The water-binder ratios of the SCC and CC were 0.36 and 0.46, respectively. The parameter investigated was the time, in weeks, taken to cause 10% mass loss of fully immersed concrete specimens in a 1% solution of sulfuric acid and the same amount of loss in a 1% solution of hydrochloric acid. The investigation indicated that the SCC performed better than the CC in sulfuric solution but was slightly more vulnerable to hydrochloric acid attack compared to CC. The mode of attack between the two solutions was different.
Resumo:
This study explores using artificial neural networks to predict the rheological and mechanical properties of underwater concrete (UWC) mixtures and to evaluate the sensitivity of such properties to variations in mixture ingredients. Artificial neural networks (ANN) mimic the structure and operation of biological neurons and have the unique ability of self-learning, mapping, and functional approximation. Details of the development of the proposed neural network model, its architecture, training, and validation are presented in this study. A database incorporating 175 UWC mixtures from nine different studies was developed to train and test the ANN model. The data are arranged in a patterned format. Each pattern contains an input vector that includes quantity values of the mixture variables influencing the behavior of UWC mixtures (that is, cement, silica fume, fly ash, slag, water, coarse and fine aggregates, and chemical admixtures) and a corresponding output vector that includes the rheological or mechanical property to be modeled. Results show that the ANN model thus developed is not only capable of accurately predicting the slump, slump-flow, washout resistance, and compressive strength of underwater concrete mixtures used in the training process, but it can also effectively predict the aforementioned properties for new mixtures designed within the practical range of the input parameters used in the training process with an absolute error of 4.6, 10.6, 10.6, and 4.4%, respectively.
Resumo:
The underwater casting of relatively thin lifts of concrete in water requires the proportioning of highly flowable concrete that can resist water dilution and segregation and spread readily into place. An investigation was carried out to determine the effects of antiwashout admixture concentration, water-cementitious materials ratio, and binder composition on the washout resistance of highly flowable concrete. Two main types of antiwashout admixtures were used: 1) a powdered welan gum at concentrations of 0.07 and 0.15% (by mass of binder); and 2) a liquid-based cellulosic admixture with dosages up to 1.65 L/100 kg of binder. The water-cementitious materials ratios were set at 0.41 and 0.47, corresponding to high-quality underwater concrete. Four binder compositions were used: a standard Canadian Type 10 cement, the same cement with 10% silica fume replacement, the cement with 50% granulated blast-furnace slag replacement, and a ternary cement containing 6% silica fume and 20% Class F fly ash. The concentrations of anti-washout admixture have direct impact on washout resistance. For a given washout loss, greater slump flow consistency can be achieved with the increases in anti-washout admixture concentration and decreases in water-binder ratio. The washout mass loss can be reduced, for a given consistency
Resumo:
Concrete used for underwater repair is often proportioned to spread readily into place and self-consolidate, and to develop high resistance to segregation and water dilution. An investigation was carried out to determine the effect of the dosage of antiwashout admixture, water-cementitious materials ratio (w/cm), and binder composition on the relative residual strength of highly flowable underwater concrete. Two types of antiwashout admixtures were used: a powdered welan gum at 0.07 and 0.15% by mass of binder, and a liquid-based cellulosic admixture employed at a high dosage of 1 to 1.65 L/100 kg of cementitious materials. The w/cms were set at 0.41 and 0.47 to secure adequate performance of underwater concrete for construction and repair. Four binder compositions were used: a Canadian Type 10 cement; a cement with 10% silica fume replacement; a cement with 50% replacement of granulated blast-furnace slag; and a ternary binder containing 6% silica fume and 20% Class F fly ash. Test results indicate that for a given washout mass loss and slump flow consistency, greater relative residual strength can be secured when the dosage of antiwashout admixture is increased, the w/cm is reduced, and a binary binder with 10% silica fume substitution or the ternary binder are employed. Such mixtures can develop relative residual compressive strengths of 85 and 80%, compared to mixtures cast in air, when the value of washout loss is limited to 4 and 6% for mixtures with slump flow values of 450 and 550 mm, respectively.
Resumo:
Concrete placed under water should be proportioned to flow readily into place with minimum materials separation. Unlike concrete cast for deep tremie seals, the use of concrete in repairs often necessitates some free fall of the mixture through water. Such placement conditions lead to greater risk of water erosion and segregation, and should be addressed in proportioning highly flowable underwater concrete. This paper evaluates the effect of free-fall height (FFH) of concrete through water on resulting in-place properties. Concrete was cast in blocks measuring 0.54 x 0.44 x 1 m with the initial FFH in water ranging between 0.25 and 0.60 m. In-place compressive and splitting tensile strengths, unit weight, and depth of washed-out and sedimentation materials were determined. In total, 24 highly flowable mixtures with slump flows greater than 500 mm were investigated. The evaluated mixtures were prepared with various hydraulic binders, including conventional Type 10 cement, a binary mixture with 10% of silica fume (SF), and a ternary binder incorporating 20% of fly ash (FA) and 6% of SF. The mixtures were proportioned with water-binder ratios (w/b) ranging between 0.41 and 0.47. Test results show that the increase of FFH of fresh concrete in water can greatly decrease the residual strength and significantly increase the thickness of washed out and sedimentation materials. The incorporation of 10% of SF, or 20% of FA and 6% of SF, and the reduction of the w/b from 0.47 to 0.41 can, however, lead to a significant increase in washout resistance and residual strength. A relationship between residual strength and the coupled factor of free-fall drop of concrete in water and washout resistance is established.