990 resultados para Computerized adaptive testing
Resumo:
The purpose of this master thesis was to perform simulations that involve use of random number while testing hypotheses especially on two samples populations being compared weather by their means, variances or Sharpe ratios. Specifically, we simulated some well known distributions by Matlab and check out the accuracy of an hypothesis testing. Furthermore, we went deeper and check what could happen once the bootstrapping method as described by Effrons is applied on the simulated data. In addition to that, one well known RobustSharpe hypothesis testing stated in the paper of Ledoit and Wolf was applied to measure the statistical significance performance between two investment founds basing on testing weather there is a statistically significant difference between their Sharpe Ratios or not. We collected many literatures about our topic and perform by Matlab many simulated random numbers as possible to put out our purpose; As results we come out with a good understanding that testing are not always accurate; for instance while testing weather two normal distributed random vectors come from the same normal distribution. The Jacque-Berra test for normality showed that for the normal random vector r1 and r2, only 94,7% and 95,7% respectively are coming from normal distribution in contrast 5,3% and 4,3% failed to shown the truth already known; but when we introduce the bootstrapping methods by Effrons while estimating pvalues where the hypothesis decision is based, the accuracy of the test was 100% successful. From the above results the reports showed that bootstrapping methods while testing or estimating some statistics should always considered because at most cases the outcome are accurate and errors are minimized in the computation. Also the RobustSharpe test which is known to use one of the bootstrapping methods, studentised one, were applied first on different simulated data including distribution of many kind and different shape secondly, on real data, Hedge and Mutual funds. The test performed quite well to agree with the existence of statistical significance difference between their Sharpe ratios as described in the paper of Ledoit andWolf.
Resumo:
Objective: to assess the prevalence of abnormalities found by computed tomography (CT) of the chest in patients with squamous cell carcinoma of the head and neck. Methods: we retrospectively analyzed chest CT exams of 209 patients with squamous cell carcinoma of the head and neck. The CT findings were stratified as inflammatory / infectious, parenchymal, nodular uncharacteristic and nodular metastatic / tumoral Results: alterations were diagnosed in 66.6% of patients. Of these, 25.3% represented emphysema; 18.8%, uncharacteristic micronodules; 12.9%, metastases; 11.9%, thoracic lymph node enlargements; and in 6.6% we detected active pulmonary tuberculosis or its sequelae, pneumonia or inflammatory / infectious signs and pleural thickening or effusion. Conclusion: the prevalence of exams with alterations and the considerable rate of detected metastases indicate that chest CT should be required for diagnostic and / or staging in cases of head and neck cancer.
Resumo:
In ship and offshore terminal construction, welded cross sections are thick and the number of welds very high. Consequently, there are two aspects of great importance; cost and heat input. Reduction in the welding operation time decreases the costs of the work force and avoids excessive heat, preventing distortion and other weld defects. The need to increase productivity while using a single wire in the GMAW process has led to the use of a high current and voltage to improve the melting rate. Unfortunately, this also increases the heat input. Innovative GMAW processes, mostly implemented for sheet plate sections, have shown significant reduction in heat input (Q), low distortion and increase in welding speed. The aim of this study is to investigate adaptive pulsed GMAW processes and assess relevant applications in the high power range, considering possible benefits when welding thicker sections and high yield strength steel. The study experimentally tests the usability of adaptive welding processes and evaluates their effects on weld properties, penetration and shapes of the weld bead.The study first briefly reviews adaptive GMAW to evaluate different approaches and their applications and to identify benefits in adaptive pulsed. Experiments are then performed using Synergic Pulsed GMAW, WiseFusionTM and Synergic GMAW processes to weld a T-joint in a horizontal position (PB). The air gap between the parts ranges from 0 to 2.5 mm. The base materials are structural steel grade S355MC and filler material G3Si1. The experiment investigates heat input, mechanical properties and microstructure of the welded joint. Analysis of the literature reveals that different approaches have been suggested using advanced digital power sources with accurate waveform, current, voltage, and feedback control. In addition, studies have clearly indicated the efficiency of lower energy welding processes. Interest in the high power range is growing and a number of different approaches have been suggested. The welding experiments in this study reveal a significant reduction of heat input and a weld microstructure with the presence of acicular ferrite (AF) beneficial for resistance to crack propagation. The WiseFusion bead had higher dilution, due to the weld bead shape, and low defects. Adaptive pulse GMAW processes can be a favoured choice when welding structures with many welded joints. The total heat reduction mitigates residual stresses and the bead shape allows a higher amperage limit. The stability of the arc during the process is virtually spatter free and allows an increase in welding speed.
Resumo:
Currently, a high penetration level of Distributed Generations (DGs) has been observed in the Danish distribution systems, and even more DGs are foreseen to be present in the upcoming years. How to utilize them for maintaining the security of the power supply under the emergency situations, has been of great interest for study. This master project is intended to develop a control architecture for studying purposes of distribution systems with large scale integration of solar power. As part of the EcoGrid EU Smart Grid project, it focuses on the system modelling and simulation of a Danish representative LV network located in Bornholm island. Regarding the control architecture, two types of reactive control techniques are implemented and compare. In addition, a network voltage control based on a tap changer transformer is tested. The optimized results after applying a genetic algorithm to five typical Danish domestic loads are lower power losses and voltage deviation using Q(U) control, specially with large consumptions. Finally, a communication and information exchange system is developed with the objective of regulating the reactive power and thereby, the network voltage remotely and real-time. Validation test of the simulated parameters are performed as well.
Resumo:
Through advances in technology, System-on-Chip design is moving towards integrating tens to hundreds of intellectual property blocks into a single chip. In such a many-core system, on-chip communication becomes a performance bottleneck for high performance designs. Network-on-Chip (NoC) has emerged as a viable solution for the communication challenges in highly complex chips. The NoC architecture paradigm, based on a modular packet-switched mechanism, can address many of the on-chip communication challenges such as wiring complexity, communication latency, and bandwidth. Furthermore, the combined benefits of 3D IC and NoC schemes provide the possibility of designing a high performance system in a limited chip area. The major advantages of 3D NoCs are the considerable reductions in average latency and power consumption. There are several factors degrading the performance of NoCs. In this thesis, we investigate three main performance-limiting factors: network congestion, faults, and the lack of efficient multicast support. We address these issues by the means of routing algorithms. Congestion of data packets may lead to increased network latency and power consumption. Thus, we propose three different approaches for alleviating such congestion in the network. The first approach is based on measuring the congestion information in different regions of the network, distributing the information over the network, and utilizing this information when making a routing decision. The second approach employs a learning method to dynamically find the less congested routes according to the underlying traffic. The third approach is based on a fuzzy-logic technique to perform better routing decisions when traffic information of different routes is available. Faults affect performance significantly, as then packets should take longer paths in order to be routed around the faults, which in turn increases congestion around the faulty regions. We propose four methods to tolerate faults at the link and switch level by using only the shortest paths as long as such path exists. The unique characteristic among these methods is the toleration of faults while also maintaining the performance of NoCs. To the best of our knowledge, these algorithms are the first approaches to bypassing faults prior to reaching them while avoiding unnecessary misrouting of packets. Current implementations of multicast communication result in a significant performance loss for unicast traffic. This is due to the fact that the routing rules of multicast packets limit the adaptivity of unicast packets. We present an approach in which both unicast and multicast packets can be efficiently routed within the network. While suggesting a more efficient multicast support, the proposed approach does not affect the performance of unicast routing at all. In addition, in order to reduce the overall path length of multicast packets, we present several partitioning methods along with their analytical models for latency measurement. This approach is discussed in the context of 3D mesh networks.
Resumo:
One of the main goals in current evolutionary biology research is to identify genes behind adaptive phenotypic variations. The advances in genomic technologies have made it possible to identify genetic loci behind these variations, also concerning non-model species. This thesis investigates the genetics of the behaviour and other adaptive traits of the nine-spined stickleback (Pungitius pungitius) through the application of different genetic approaches. Fennoscandian nine-spined stickleback populations express large phenotypical differences especially in behaviour, life –history traits and morphology. However the underlying genetic bases for these phenotypical differences have not been studied in detail. The results of the project will lay the foundation for further genetics studies and provide valuable information for our understanding of the genetics of the adaptive divergence of the nine-spined stickleback. A candidate gene approach was used to develop microsatellite markers situating close to candidate genes for behaviour in the nine-spined stickleback. Altogether 13 markers were developed and these markers were used in the subsequent studies with the anonymous random markers and physiologically important gene markers which are already currently available for nine-spined sticklebacks. It was shown that heterozygosity correlated with behaviour in one of the marine nine-spined stickleback populations but with contrasting effects: correlations with behaviour were negative when using physiological gene markers and positive with random markers. No correlation was found between behavioural markers and behaviour. From the physiological gene markers, a strong correlation was found between osmoregulation-related gene markers and behaviour. These results indicate that both local (physiological) and general (random) effects are important in the shaping of behaviour and that heterozygosity– behaviour correlations are population dependent. In this thesis a second linkage map for nine-spined sticklebacks was constructed. Compared to the earlier nine-spined stickleback linkage map, genomic rearrangements were observed between autosomal (LG7) and sex-determing (LG12) linkage groups. This newly constructed map was used in QTL mapping studies in order to locate genomic regions associated with pelvic structures, behaviour and body size/growth. One major QTL was found for pelvic structures and Pitx1 gene was related to these traits as was predicted from three-spined stickleback studies, but this was in contrast to earlier nine-spined stickleback study. The QTL studies also revealed that behaviour and body size/growth were genetically more complex by having more QTL than pelvic traits. However, in many cases, pelvic structure, body size/growth and behaviour were linked to similar map locations indicating possible pleiotropic effects of genes locating in these QTL regions. Many of the gene related markers resided in the QTL area. In the future, studying these possible candidate genes in depth might reveal the underlying mechanism behind the measured traits.
Resumo:
Lappeenrannan teknillisen yliopiston LUT-metallin Konepaja- ja levytyötekniikan laboratoriossa kehitettiin adaptiivinen rouhintasorvaus-järjestelmä, joka on nimetty FeedChip:ksi. Työssä käsitellään FeedChip-järjestelmän toimivuutta Ovakon erikoisteräksen testauksessa sekä lastuamisnopeuden vaikutusta lastuttavuuteen.
Resumo:
Abstract: The VHS and CTR were assessed using computerized thoracic radiographs of ten clinically healthy tufted capuchin monkeys (five males and five females) from the Wild Animal Screening Center in São Luís (Centro de Triagem de Animais Silvestres de São Luís-MA-CETAS). Radiographs were taken in laterolateral and dorsoventral projections to calculate the cardiothoracic ratio (VHS) and vertebral heart size (CTR). The VHS showed mean values of 9.34±0.32v (males) and 9.16±0.34v (females) and there was no statistical difference between males and females (p>0.05). The CTR showed mean values of 0.55±0.04 (males) and 0.52±0.03 (females) and there was no statistical difference between the sexes (p>0.05). There was positive correlation between VHS and CTR (r=0.78). The thoracic and heart diameters showed mean values of 5.70±0.48cm and 2.16±0.40cm in the males, respectively. In the females they measured 5.32±0.39cm and 2.94±0.32cm. There was no statistical difference between the sexes. Our results show that the high correlation found between VHS and CTR permitted the verification with similar clinical precision between the two methods to estimate alterations in the heart silhouette by radiographic examination of tufted capuchin, making it an easy technique to apply that can be considered in the investigation of heart problems for this wild species.
Resumo:
Abstract: Taenia solium is a zoonotic tapeworm of great importance in developing countries, due to the occurrence of human taeniasis and cysticercosis. Pigs have an important role in the biological cycle of the parasite as intermediate hosts. The scientific literature has been describing risk factors associated with the occurrence of this disease that must be avoided in countries with poor sanitation, in order to reduce the exposure of swine to the parasite eggs. This research focused on testing pigs of non-technified rearing farms for serum antibodies against Taenia solium in the region of Jaboticabal municipality, in the state of São Paulo, Brazil. The found prevalence was 6.82% (CI 95% 4.18 - 9.45) at animal level and 28.87% (CI 95% 16.74 - 40.40) at herd level. These figures are probably associated with low technification adoption during animal rearing in the studied area, which increased the exposure of the animals to risk factors associated with the occurrence of Taenia solium complex. The results found based on serological evidences of swine cysticercosis in the studied region serves as a warning to public sanitary authorities to improve public health and control T. solium.
Resumo:
This paper presents an HP-Adaptive Procedure with Hierarchical formulation for the Boundary Element Method in 2-D Elasticity problems. Firstly, H, P and HP formulations are defined. Then, the hierarchical concept, which allows a substantial reduction in the dimension of equation system, is introduced. The error estimator used is based on the residual computation over each node inside an element. Finally, the HP strategy is defined and applied to two examples.
Resumo:
This paper concerns the development of drives that use electromechanical rotative motor systems. It is proposed an experimental drive test structure integrated to simulation softwares. The objective of this work is to show that an affordable model validation procedure can be obtained by combining a precision data acquisition with well tuned state-of-the-art simulation packages. This is required for fitting, in the best way, a drive to its load or, inversely, to adapt loads to given drive characteristics.
Resumo:
At present, permanent magnet synchronous generators (PMSGs) are of great interest. Since they do not have electrical excitation losses, the highly efficient, lightweight and compact PMSGs equipped with damper windings work perfectly when connected to a network. However, in island operation, the generator (or parallel generators) alone is responsible for the building up of the network and maintaining its voltage and reactive power level. Thus, in island operation, a PMSG faces very tight constraints, which are difficult to meet, because the flux produced by the permanent magnets (PMs) is constant and the voltage of the generator cannot be controlled. Traditional electrically excited synchronous generators (EESGs) can easily meet these constraints, because the field winding current is controllable. The main drawback of the conventional EESG is the relatively high excitation loss. This doctoral thesis presents a study of an alternative solution termed as a hybrid excitation synchronous generator (HESG). HESGs are a special class of electrical machines, where the total rotor current linkage is produced by the simultaneous action of two different excitation sources: the electrical and permanent magnet (PM) excitation. An overview of the existing HESGs is given. Several HESGs are introduced and compared with the conventional EESG from technical and economic points of view. In the study, the armature-reaction-compensated permanent magnet synchronous generator with alternated current linkages (ARC-PMSG with ACL) showed a better performance than the other options. Therefore, this machine type is studied in more detail. An electromagnetic design and a thermal analysis are presented. To verify the operation principle and the electromagnetic design, a down-sized prototype of 69 kVA apparent power was built. The experimental results are demonstrated and compared with the predicted ones. A prerequisite for an ARC-PMSG with ACL is an even number of pole pairs (p = 2, 4, 6, …) in the machine. Naturally, the HESG technology is not limited to even-pole-pair machines. However, the analysis of machines with p = 3, 5, 7, … becomes more complicated, especially if analytical tools are used, and is outside the scope of this thesis. The contribution of this study is to propose a solution where an ARC-PMSG replaces an EESG in electrical power generation while meeting all the requirements set for generators given for instance by ship classification societies, particularly as regards island operation. The maximum power level when applying the technology studied here is mainly limited by the economy of the machine. The larger the machine is, the smaller is the efficiency benefit. However, it seems that machines up to ten megawatts of power could benefit from the technology. However, in low-power applications, for instance in the 500 kW range, the efficiency increase can be significant.