838 resultados para Computer based training
Resumo:
Process supervision is the activity focused on monitoring the process operation in order to deduce conditions to maintain the normality including when faults are present Depending on the number/distribution/heterogeneity of variables, behaviour situations, sub-processes, etc. from processes, human operators and engineers do not easily manipulate the information. This leads to the necessity of automation of supervision activities. Nevertheless, the difficulty to deal with the information complicates the design and development of software applications. We present an approach called "integrated supervision systems". It proposes multiple supervisors coordination to supervise multiple sub-processes whose interactions permit one to supervise the global process
Resumo:
Metabolic problems lead to numerous failures during clinical trials, and much effort is now devoted to developing in silico models predicting metabolic stability and metabolites. Such models are well known for cytochromes P450 and some transferases, whereas less has been done to predict the activity of human hydrolases. The present study was undertaken to develop a computational approach able to predict the hydrolysis of novel esters by human carboxylesterase hCES2. The study involved first a homology modeling of the hCES2 protein based on the model of hCES1 since the two proteins share a high degree of homology (congruent with 73%). A set of 40 known substrates of hCES2 was taken from the literature; the ligands were docked in both their neutral and ionized forms using GriDock, a parallel tool based on the AutoDock4.0 engine which can perform efficient and easy virtual screening analyses of large molecular databases exploiting multi-core architectures. Useful statistical models (e.g., r (2) = 0.91 for substrates in their unprotonated state) were calculated by correlating experimental pK(m) values with distance between the carbon atom of the substrate's ester group and the hydroxy function of Ser228. Additional parameters in the equations accounted for hydrophobic and electrostatic interactions between substrates and contributing residues. The negatively charged residues in the hCES2 cavity explained the preference of the enzyme for neutral substrates and, more generally, suggested that ligands which interact too strongly by ionic bonds (e.g., ACE inhibitors) cannot be good CES2 substrates because they are trapped in the cavity in unproductive modes and behave as inhibitors. The effects of protonation on substrate recognition and the contrasting behavior of substrates and products were finally investigated by MD simulations of some CES2 complexes.
Resumo:
The paper focuses on taking advantage of large amounts of data that are systematically stored in plants (by means of SCADA systems), but not exploited enough in order to achieve supervisory goals (fault detection, diagnosis and reconfiguration). The methodology of case base reasoning (CBR) is proposed to perform supervisory tasks in industrial processes by re-using the stored data. The goal is to take advantage of experiences, registered in a suitable structure as cam, avoiding the tedious task of knowledge acquisition and representation needed by other reasoning techniques as expert systems. An outlook of CBR terminology and basic concepts are presented. The adaptation of CBR in performing expert supervisory tasks, taking into account the particularities and difficulties derived from dynamic systems, is discussed. A special interest is focused in proposing a general case definition suitable for supervisory tasks. Finally, this structure and the whole methodology is tested in a application example for monitoring a real drier chamber
Resumo:
L'article és una reflexió sobre els requisits de formació dels professionals que demana la societat del coneixement. Un dels objectius més importants que ha de tenir la universitat en la societat del coneixement és la formació de professionals competents que tinguin prou eines intel·lectuals per a enfrontar-se a la incertesa de la informació, a la consciència que aquesta té una data de caducitat a curt termini i a l'ansietat que això provoca. Però, a més, també han de ser capaços de definir i crear les eines de treball amb què donaran sentit i eficàcia a aquest coneixement mudable i mutant. Per això, l'espai europeu d'ensenyament superior prioritza la competència transversal del treball col·laboratiu amb l'objectiu de promoure un aprenentatge autònom, compromès i adaptat a les noves necessitats de l'empresa del segle xxi. En aquest context, es presenta l'entorn teòric que fonamenta el treball desenvolupat a la plataforma informàtica ACME, que uneix el treball col·laboratiu i l'aprenentatge semipresencial o blended learning. Així mateix, es descriuen amb detall alguns exemples de wikis, paradigma del treball col·laboratiu, fets en assignatures impartides per la Universitat de Girona en l'espai virtual ACME
Resumo:
Image registration is an important component of image analysis used to align two or more images. In this paper, we present a new framework for image registration based on compression. The basic idea underlying our approach is the conjecture that two images are correctly registered when we can maximally compress one image given the information in the other. The contribution of this paper is twofold. First, we show that the image registration process can be dealt with from the perspective of a compression problem. Second, we demonstrate that the similarity metric, introduced by Li et al., performs well in image registration. Two different versions of the similarity metric have been used: the Kolmogorov version, computed using standard real-world compressors, and the Shannon version, calculated from an estimation of the entropy rate of the images
Resumo:
Background: Specific physical loading leads to enhanced bone development during childhood. A general physical activity program mimicking a real-life situation was successful at increasing general physical health in children. Yet, it is not clear whether it can equally increase bone mineral mass. We performed a cluster-randomized controlled trial in children of both gender and different pubertal stages to determine whether a school-based physical activity (PA) program during one school-year influences bone mineral content (BMC) and density (BMD), irrespective of gender.Methods: Twenty-eight 1st and 5th grade (6-7 and 11-12 year-old) classes were cluster randomized to an intervention (INT, 16 classes, n = 297) and control (CON; 12 classes, n = 205) group. The intervention consisted of a multi-component PA intervention including daily physical education with at least 10 min of jumping or strength training exercises of various intensities. Measurements included anthropometry, and BMC and BMD of total body, femoral neck, total hip and lumbar spine using dual-energy X-ray absorptiometry (DXA). PA was assessed by accelerometers and Tanner stages by questionnaires. Analyses were performed by a regression model adjusted for gender, baseline height and weight, baseline PA, post-intervention pubertal stage, baseline BMC, and cluster.Results: 275 (72%) of 380 children who initially agreed to have DXA measurements had also post-intervention DXA and PA data. Mean age of prepubertal and pubertal children at baseline was 8.7 +/- 2.1 and 11.1 +/- 0.6 years, respectively. Compared to CON, children in INT showed statistically significant increases in BMC of total body, femoral neck, and lumbar spine by 5.5%, 5.4% and 4.7% (all p < 0.05), respectively, and BMD of total body and lumbar spine by 8.4% and 7.3% (both p < 0.01), respectively. There was no gender*group, but a pubertal stage*group interaction consistently favoring prepubertal children.Conclusion: A general school-based PA intervention can increase bone health in elementary school children of both genders, particularly before puberty. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Shape complexity has recently received attention from different fields, such as computer vision and psychology. In this paper, integral geometry and information theory tools are applied to quantify the shape complexity from two different perspectives: from the inside of the object, we evaluate its degree of structure or correlation between its surfaces (inner complexity), and from the outside, we compute its degree of interaction with the circumscribing sphere (outer complexity). Our shape complexity measures are based on the following two facts: uniformly distributed global lines crossing an object define a continuous information channel and the continuous mutual information of this channel is independent of the object discretisation and invariant to translations, rotations, and changes of scale. The measures introduced in this paper can be potentially used as shape descriptors for object recognition, image retrieval, object localisation, tumour analysis, and protein docking, among others
Resumo:
The study of cross-reactivity in allergy is key to both understanding. the allergic response of many patients and providing them with a rational treatment In the present study, protein microarrays and a co-sensitization graph approach were used in conjunction with an allergen microarray immunoassay. This enabled us to include a wide number of proteins and a large number of patients, and to study sensitization profiles among members of the LTP family. Fourteen LTPs from the most frequent plant food-induced allergies in the geographical area studied were printed into a microarray specifically designed for this research. 212 patients with fruit allergy and 117 food-tolerant pollen allergic subjects were recruited from seven regions of Spain with different pollen profiles, and their sera were tested with allergen microarray. This approach has proven itself to be a good tool to study cross-reactivity between members of LTP family, and could become a useful strategy to analyze other families of allergens.
Resumo:
BACKGROUND Functional brain images such as Single-Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) have been widely used to guide the clinicians in the Alzheimer's Disease (AD) diagnosis. However, the subjectivity involved in their evaluation has favoured the development of Computer Aided Diagnosis (CAD) Systems. METHODS It is proposed a novel combination of feature extraction techniques to improve the diagnosis of AD. Firstly, Regions of Interest (ROIs) are selected by means of a t-test carried out on 3D Normalised Mean Square Error (NMSE) features restricted to be located within a predefined brain activation mask. In order to address the small sample-size problem, the dimension of the feature space was further reduced by: Large Margin Nearest Neighbours using a rectangular matrix (LMNN-RECT), Principal Component Analysis (PCA) or Partial Least Squares (PLS) (the two latter also analysed with a LMNN transformation). Regarding the classifiers, kernel Support Vector Machines (SVMs) and LMNN using Euclidean, Mahalanobis and Energy-based metrics were compared. RESULTS Several experiments were conducted in order to evaluate the proposed LMNN-based feature extraction algorithms and its benefits as: i) linear transformation of the PLS or PCA reduced data, ii) feature reduction technique, and iii) classifier (with Euclidean, Mahalanobis or Energy-based methodology). The system was evaluated by means of k-fold cross-validation yielding accuracy, sensitivity and specificity values of 92.78%, 91.07% and 95.12% (for SPECT) and 90.67%, 88% and 93.33% (for PET), respectively, when a NMSE-PLS-LMNN feature extraction method was used in combination with a SVM classifier, thus outperforming recently reported baseline methods. CONCLUSIONS All the proposed methods turned out to be a valid solution for the presented problem. One of the advances is the robustness of the LMNN algorithm that not only provides higher separation rate between the classes but it also makes (in combination with NMSE and PLS) this rate variation more stable. In addition, their generalization ability is another advance since several experiments were performed on two image modalities (SPECT and PET).
Resumo:
BACKGROUND In the last decades the presence of social inequalities in diabetes care has been observed in multiple countries, including Spain. These inequalities have been at least partially attributed to differences in diabetes self-management behaviours. Communication problems during medical consultations occur more frequently to patients with a lower educational level. The purpose of this cluster randomized trial is to determine whether an intervention implemented in a General Surgery, based in improving patient-provider communication, results in a better diabetes self-management in patients with lower educational level. A secondary objective is to assess whether telephone reinforcement enhances the effect of such intervention. We report the design and implementation of this on-going study. METHODS/DESIGN The study is being conducted in a General Practice located in a deprived neighbourhood of Granada, Spain. Diabetic patients 18 years old or older with a low educational level and inadequate glycaemic control (HbA1c > 7%) were recruited. General Practitioners (GPs) were randomised to three groups: intervention A, intervention B and control group. GPs allocated to intervention groups A and B received training in communication skills and are providing graphic feedback about glycosylated haemoglobin levels. Patients whose GPs were allocated to group B are additionally receiving telephone reinforcement whereas patients from the control group are receiving usual care. The described interventions are being conducted during 7 consecutive medical visits which are scheduled every three months. The main outcome measure will be HbA1c; blood pressure, lipidemia, body mass index and waist circumference will be considered as secondary outcome measures. Statistical analysis to evaluate the effectiveness of the interventions will include multilevel regression analysis with three hierarchical levels: medical visit level, patient level and GP level. DISCUSSION The results of this study will provide new knowledge about possible strategies to promote a better diabetes self-management in a particularly vulnerable group. If effective, this low cost intervention will have the potential to be easily incorporated into routine clinical practice, contributing to decrease health inequalities in diabetic patients. TRIAL REGISTRATION Clinical Trials U.S. National Institutes of Health, NCT01849731.
Resumo:
Trans-apical aortic valve replacement (AVR) is a new and rapidly growing therapy. However, there are only few training opportunities. The objective of our work is to build an appropriate artificial model of the heart that can replace the use of animals for surgical training in trans-apical AVR procedures. To reduce the necessity for fluoroscopy, we pursued the goal of building a translucent model of the heart that has nature-like dimensions. A simplified 3D model of a human heart with its aortic root was created in silico using the SolidWorks Computer-Aided Design (CAD) program. This heart model was printed using a rapid prototyping system developed by the Fab@Home project and dip-coated two times with dispersion silicone. The translucency of the heart model allows the perception of the deployment area of the valved-stent without using heavy imaging support. The final model was then placed in a human manikin for surgical training on trans-apical AVR procedure. Trans-apical AVR with all the necessary steps (puncture, wiring, catheterization, ballooning etc.) can be realized repeatedly in this setting.
Resumo:
AIM: The aim of this study was to evaluate a new pedagogical approach in teaching fluid, electrolyte and acid-base pathophysiology in undergraduate students. METHODS: This approach comprises traditional lectures, the study of clinical cases on the web and a final interactive discussion of these cases in the classroom. When on the web, the students are asked to select laboratory tests that seem most appropriate to understand the pathophysiological condition underlying the clinical case. The percentage of students having chosen a given test is made available to the teacher who uses it in an interactive session to stimulate discussion with the whole class of students. The same teacher used the same case studies during 2 consecutive years during the third year of the curriculum. RESULTS: The majority of students answered the questions on the web as requested and evaluated positively their experience with this form of teaching and learning. CONCLUSIONS: Complementing traditional lectures with online case-based studies and interactive group discussions represents, therefore, a simple means to promote the learning and the understanding of complex pathophysiological mechanisms. This simple problem-based approach to teaching and learning may be implemented to cover all fields of medicine.
Resumo:
Malaria is responsible for more deaths around the world than any other parasitic disease. Due to the emergence of strains that are resistant to the current chemotherapeutic antimalarial arsenal, the search for new antimalarial drugs remains urgent though hampered by a lack of knowledge regarding the molecular mechanisms of artemisinin resistance. Semisynthetic compounds derived from diterpenes from the medicinal plant Wedelia paludosawere tested in silico against the Plasmodium falciparumCa2+-ATPase, PfATP6. This protein was constructed by comparative modelling using the three-dimensional structure of a homologous protein, 1IWO, as a scaffold. Compound 21 showed the best docking scores, indicating a better interaction with PfATP6 than that of thapsigargin, the natural inhibitor. Inhibition of PfATP6 by diterpene compounds could promote a change in calcium homeostasis, leading to parasite death. These data suggest PfATP6 as a potential target for the antimalarial ent-kaurane diterpenes.