893 resultados para Computer Science, Software Engineering
Resumo:
This paper describes the modeling of a weed infestation risk inference system that implements a collaborative inference scheme based on rules extracted from two Bayesian network classifiers. The first Bayesian classifier infers a categorical variable value for the weed-crop competitiveness using as input categorical variables for the total density of weeds and corresponding proportions of narrow and broad-leaved weeds. The inferred categorical variable values for the weed-crop competitiveness along with three other categorical variables extracted from estimated maps for the weed seed production and weed coverage are then used as input for a second Bayesian network classifier to infer categorical variables values for the risk of infestation. Weed biomass and yield loss data samples are used to learn the probability relationship among the nodes of the first and second Bayesian classifiers in a supervised fashion, respectively. For comparison purposes, two types of Bayesian network structures are considered, namely an expert-based Bayesian classifier and a naive Bayes classifier. The inference system focused on the knowledge interpretation by translating a Bayesian classifier into a set of classification rules. The results obtained for the risk inference in a corn-crop field are presented and discussed. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a small-area CMOS current-steering segmented digital-to-analog converter (DAC) design intended for RF transmitters in 2.45 GHz Bluetooth applications. The current-source design strategy is based on an iterative scheme whose variables are adjusted in a simple way, minimizing the area and the power consumption, and meeting the design specifications. A theoretical analysis of static-dynamic requirements and a new layout strategy to attain a small-area current-steering DAC are included. The DAC was designed and implemented in 0.35 mu m CMOS technology, requiring an active area of just 200 mu m x 200 mu m. Experimental results, with a full-scale output current of 700 mu A and a 3.3 V power supply, showed a spurious-free dynamic range of 58 dB for a 1 MHz output sine wave and sampling frequency of 50 MHz, with differential and integral nonlinearity of 0.3 and 0.37 LSB, respectively.
Resumo:
The main purpose of this paper is to present architecture of automated system that allows monitoring and tracking in real time (online) the possible occurrence of faults and electromagnetic transients observed in primary power distribution networks. Through the interconnection of this automated system to the utility operation center, it will be possible to provide an efficient tool that will assist in decisionmaking by the Operation Center. In short, the desired purpose aims to have all tools necessary to identify, almost instantaneously, the occurrence of faults and transient disturbances in the primary power distribution system, as well as to determine its respective origin and probable location. The compilations of results from the application of this automated system show that the developed techniques provide accurate results, identifying and locating several occurrences of faults observed in the distribution system.
Resumo:
The goal of this paper is to study and propose a new technique for noise reduction used during the reconstruction of speech signals, particularly for biomedical applications. The proposed method is based on Kalman filtering in the time domain combined with spectral subtraction. Comparison with discrete Kalman filter in the frequency domain shows better performance of the proposed technique. The performance is evaluated by using the segmental signal-to-noise ratio and the Itakura-Saito`s distance. Results have shown that Kalman`s filter in time combined with spectral subtraction is more robust and efficient, improving the Itakura-Saito`s distance by up to four times. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This work proposes a method based on both preprocessing and data mining with the objective of identify harmonic current sources in residential consumers. In addition, this methodology can also be applied to identify linear and nonlinear loads. It should be emphasized that the entire database was obtained through laboratory essays, i.e., real data were acquired from residential loads. Thus, the residential system created in laboratory was fed by a configurable power source and in its output were placed the loads and the power quality analyzers (all measurements were stored in a microcomputer). So, the data were submitted to pre-processing, which was based on attribute selection techniques in order to minimize the complexity in identifying the loads. A newer database was generated maintaining only the attributes selected, thus, Artificial Neural Networks were trained to realized the identification of loads. In order to validate the methodology proposed, the loads were fed both under ideal conditions (without harmonics), but also by harmonic voltages within limits pre-established. These limits are in accordance with IEEE Std. 519-1992 and PRODIST (procedures to delivery energy employed by Brazilian`s utilities). The results obtained seek to validate the methodology proposed and furnish a method that can serve as alternative to conventional methods.
Resumo:
The purpose of this paper is to propose a multiobjective optimization approach for solving the manufacturing cell formation problem, explicitly considering the performance of this said manufacturing system. Cells are formed so as to simultaneously minimize three conflicting objectives, namely, the level of the work-in-process, the intercell moves and the total machinery investment. A genetic algorithm performs a search in the design space, in order to approximate to the Pareto optimal set. The values of the objectives for each candidate solution in a population are assigned by running a discrete-event simulation, in which the model is automatically generated according to the number of machines and their distribution among cells implied by a particular solution. The potential of this approach is evaluated via its application to an illustrative example, and a case from the relevant literature. The obtained results are analyzed and reviewed. Therefore, it is concluded that this approach is capable of generating a set of alternative manufacturing cell configurations considering the optimization of multiple performance measures, greatly improving the decision making process involved in planning and designing cellular systems. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this article a novel algorithm based on the chemotaxis process of Echerichia coil is developed to solve multiobjective optimization problems. The algorithm uses fast nondominated sorting procedure, communication between the colony members and a simple chemotactical strategy to change the bacterial positions in order to explore the search space to find several optimal solutions. The proposed algorithm is validated using 11 benchmark problems and implementing three different performance measures to compare its performance with the NSGA-II genetic algorithm and with the particle swarm-based algorithm NSPSO. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This work presents an automated system for the measurement of form errors of mechanical components using an industrial robot. A three-probe error separation technique was employed to allow decoupling between the measured form error and errors introduced by the robotic system. A mathematical model of the measuring system was developed to provide inspection results by means of the solution of a system of linear equations. A new self-calibration procedure, which employs redundant data from several runs, minimizes the influence of probes zero-adjustment on the final result. Experimental tests applied to the measurement of straightness errors of mechanical components were accomplished and demonstrated the effectiveness of the employed methodology. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This work extends a previously presented refined sandwich beam finite element (FE) model to vibration analysis, including dynamic piezoelectric actuation and sensing. The mechanical model is a refinement of the classical sandwich theory (CST), for which the core is modelled with a third-order shear deformation theory (TSDT). The FE model is developed considering, through the beam length, electrically: constant voltage for piezoelectric layers and quadratic third-order variable of the electric potential in the core, while meclianically: linear axial displacement, quadratic bending rotation of the core and cubic transverse displacement of the sandwich beam. Despite the refinement of mechanical and electric behaviours of the piezoelectric core, the model leads to the same number of degrees of freedom as the previous CST one due to a two-step static condensation of the internal dof (bending rotation and core electric potential third-order variable). The results obtained with the proposed FE model are compared to available numerical, analytical and experimental ones. Results confirm that the TSDT and the induced cubic electric potential yield an extra stiffness to the sandwich beam. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Purpose - The purpose of this paper is to examine whether the level of logistics information systems (LIS) adoption in manufacturing companies is influenced by organizational profile variables, such as the company`s size, the nature of its operations and their subsectors. Design/methodology/approach - A review of the mainstream literature on US was carried out to identify the factors influencing the adoption of such information systems and also some research gaps. The empirical study`s strategy is based on a survey research in Brazilian manufacturing firms from the capital goods industry. Data collected were analyzed through Kruskall-Wallis and Mann Whitney`s non-parametric tests. Findings - The analysis indicates that characteristics such as the size of companies and the nature of their operations influence the levels of LIS adoption, whilst comparisons regarding the subsectors appeared to be of little influence. Originality/value - This is the first known study to examine the influence of organizational profiles such as size, nature of operations and subsector on the level of US adoption in manufacturing companies. Moreover, it is unique in portraying the Brazilian scenario on this topic and addressing the adoption of seven types of LIS in a single study.
Resumo:
The general flowshop scheduling problem is a production problem where a set of n jobs have to be processed with identical flow pattern on in machines. In permutation flowshops the sequence of jobs is the same on all machines. A significant research effort has been devoted for sequencing jobs in a flowshop minimizing the makespan. This paper describes the application of a Constructive Genetic Algorithm (CGA) to makespan minimization on flowshop scheduling. The CGA was proposed recently as an alternative to traditional GA approaches, particularly, for evaluating schemata directly. The population initially formed only by schemata, evolves controlled by recombination to a population of well-adapted structures (schemata instantiation). The CGA implemented is based on the NEH classic heuristic and a local search heuristic used to define the fitness functions. The parameters of the CGA are calibrated using a Design of Experiments (DOE) approach. The computational results are compared against some other successful algorithms from the literature on Taillard`s well-known standard benchmark. The computational experience shows that this innovative CGA approach provides competitive results for flowshop scheduling; problems. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Product lifecycle management (PLM) innovates as it defines both the product as a central element to aggregate enterprise information and the lifecycle as a new time dimension for information integration and analysis. Because of its potential benefits to shorten innovation lead-times and to reduce costs, PLM has attracted a lot of attention at industry and at research. However, the current PLM implementation stage at most organisations still does not apply the lifecycle management concepts thoroughly. In order to close the existing realisation gap, this article presents a process oriented framework to support effective PLM implementation. The framework central point consists of a set of lifecycle oriented business process reference models which links the necessary fundamental concepts, enterprise knowledge and software solutions to effectively deploy PLM. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper presents an accurate and efficient solution for the random transverse and angular displacement fields of uncertain Timoshenko beams. Approximate, numerical solutions are obtained using the Galerkin method and chaos polynomials. The Chaos-Galerkin scheme is constructed by respecting the theoretical conditions for existence and uniqueness of the solution. Numerical results show fast convergence to the exact solution, at excellent accuracies. The developed Chaos-Galerkin scheme accurately approximates the complete cumulative distribution function of the displacement responses. The Chaos-Galerkin scheme developed herein is a theoretically sound and efficient method for the solution of stochastic problems in engineering. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, the Askey-Wiener scheme and the Galerkin method are used to obtain approximate solutions to stochastic beam bending on Winkler foundation. The study addresses Euler-Bernoulli beams with uncertainty in the bending stiffness modulus and in the stiffness of the foundation. Uncertainties are represented by parameterized stochastic processes. The random behavior of beam response is modeled using the Askey-Wiener scheme. One contribution of the paper is a sketch of proof of existence and uniqueness of the solution to problems involving fourth order operators applied to random fields. From the approximate Galerkin solution, expected value and variance of beam displacement responses are derived, and compared with corresponding estimates obtained via Monte Carlo simulation. Results show very fast convergence and excellent accuracies in comparison to Monte Carlo simulation. The Askey-Wiener Galerkin scheme presented herein is shown to be a theoretically solid and numerically efficient method for the solution of stochastic problems in engineering.
Resumo:
This paper presents some improvements in the model proposed by Machado et al. [Machado SL, Carvalho MF, Vilar OM. Constitutive model for municipal solid waste. J Geotech Geoenviron Eng ASCE 2002; 128(11):940-51] now considering the influence of biodegradation of organic matter in the mechanical behavior of municipal solid waste. The original framework considers waste as composed of two component groups; fibers and organic paste. The particular laws of behavior are assessed for each component group and then coupled to represent waste behavior. The improvements introduced in this paper take into account the changes in the properties of fibers and mass loss due to organic matter depletion over time. Mass loss is indirectly calculated considering the MSW gas generation potential through a first order decay model. It is shown that as the biodegradation process occurs the proportion of fibers increases, however, they also undergo a degradation process which tends to reduce their ultimate tensile stress and Young modulus. The way these changes influence the behavior of MSW is incorporated in the final framework which captures the main features of the MSW stress-strain behavior under different loading conditions. (C) 2007 Elsevier Ltd. All rights reserved.