928 resultados para Computational fluid dynamics, turbulence modeling, turbolenza, aerodynamics, channel flow, large-eddy simulation, direct numerical simulation, LES, DNS, KTH


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computations are made for chevron and coflowing jet nozzles. The latter has a bypass ratio of 6:1. Also, unlike the chevron nozzle, the core flow is heated, making the inlet conditions reminiscent of those for a real engine. A large-eddy resolving approach is used with circa 12 × 10 6 cell meshes. Because the codes being used tend toward being dissipative the subgrid scale model is abandoned, giving what can be termed numerical large-eddy simulation. To overcome near-wall modeling problems a hybrid numerical large-eddy simulation-Reynolds-averaged Navier-Stokes related method is used. For y + ≤ 60 a Reynolds-averaged Navier-Stokes model is used. Blending between the two regions makes use of the differential Hamilton-Jabobi equation, an extension of the eikonal equation. For both nozzles, results show encouraging agreement with measurements of other workers. The eikonal equation is also used for ray tracing to explore the effect of the mean flow on acoustic ray trajectories, thus yielding a coherent solution strategy. © 2011 by Cambridge University.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hybrid numerical large eddy simulation (NLES) and detached eddy simulation (DES) methods are assessed on a labyrinth seal geometry. A high sixth order discretization scheme is used and is validated using a test case of a two dimensional vortex. The hybrid approach adopts a new blending function and along with DES is initially validated using a simple cavity flow. The NLES method is also validated outside of RANS zones. It is found that there is very little resolved turbulence in the cavity for the DES simulation. For the labyrinth seal calculations the DES approach is problematic giving virtually no resolved turbulence content. It is seen that over the tooth tips the extent of the LES region is small and is likely to be a strong contributor to excessive flow damping in these regions. On the other hand the zonal Hamilton-Jacobi approach did not suffer from this trait. In both cases the meshes used are considered to be hybrid RANS-LES adequate. Fortunately (or perhaps unfortunately) the DES profiles are in agreement with the time mean experimental measurements. It is concluded that for an inexperienced CFD practitioner this could have wider implications particularly if transient results such as unsteady loading are desired. Copyright © 2012 by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hybrid numerical large eddy simulation (NLES), detached eddy simulation (DES) and URANS methods are assessed on a cavity and a labyrinth seal geometry. A high sixth-order discretization scheme is used and is validated using the test case of a two-dimensional vortex. The hybrid approach adopts a new blending function. For the URANS simulations, the flow within the cavity remains steady, and the results show significant variation between models. Surprisingly, low levels of resolved turbulence are observed in the cavity for the DES simulation, and the cavity shear layer remains two dimensional. The hybrid RANS-NLES approach does not suffer from this trait.For the labyrinth seal, both the URANS and DES approaches give low levels of resolved turbulence. The zonal Hamilton-Jacobi approach on the other had given significantly more resolved content. Both DES and hybrid RANS-NLES give good agreement with the experimentally measured velocity profiles. Again, there is significant variation between the URANS models, and swirl velocities are overpredicted. © 2013 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Film cooling is extensively used to provide protection against the severe thermal environment in gas turbine engines. Most of the computational studies on film cooling flow have been done using steady Reynolds-averaged Navier–Stokes calculation procedures. However, the flowfield associated with a jet in a crossflow is highly unsteady and complex with different types of vortical structures. In this paper, a computational investigation about the unsteady phenomena of a jet in a crossflow is performed using detached eddy simulation. Detailed computation of a single row of 35 deg round holes on a flat plate has been obtained for a 1.0 blowing ratio and a 2.0 density ratio. First, time-step size, grid resolution, and computational domain tests for an unsteady simulation have been conducted. Comparison between the results of unsteady Reynolds-averaged Navier–Stokes calculation, detached eddy simulation, and large eddy simulation is also performed. Comparison of the time-averaged detached eddy simulation prediction with the measured film-cooling effectiveness shows that the detached eddy simulation prediction is reasonable. From present detached eddy simulations, the influential coherent vortical structures of a film cooling flow can be seen. The unsteady physics of jet in a crossflow interactions and a jet liftoff in film cooling flows have been explained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study describes the turbulent processes in the upper ocean boundary layer forced by a constant surface stress in the absence of the Coriolis force using large-eddy simulation. The boundary layer that develops has a two-layer structure, a well-mixed layer above a stratified shear layer. The depth of the mixed layer is approximately constant, whereas the depth of the shear layer increases with time. The turbulent momentum flux varies approximately linearly from the surface to the base of the shear layer. There is a maximum in the production of turbulence through shear at the base of the mixed layer. The magnitude of the shear production increases with time. The increase is mainly a result of the increase in the turbulent momentum flux at the base of the mixed layer due to the increase in the depth of the boundary layer. The length scale for the shear turbulence is the boundary layer depth. A simple scaling is proposed for the magnitude of the shear production that depends on the surface forcing and the average mixed layer current. The scaling can be interpreted in terms of the divergence of a mean kinetic energy flux. A simple bulk model of the boundary layer is developed to obtain equations describing the variation of the mixed layer and boundary layer depths with time. The model shows that the rate at which the boundary layer deepens does not depend on the stratification of the thermocline. The bulk model shows that the variation in the mixed layer depth is small as long as the surface buoyancy flux is small.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer clouds using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances under conditions when precipitation does not reach the surface. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from large-eddy simulation snapshots of cumulus under stratocumulus, where cloud water path is retrieved with an error of 31 g m−2 . The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the Northeast Pacific. Here, retrieved cloud water path agrees well with independent three-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m−2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEB

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical study using Large Eddy Simulation Coherent Structure Model (LES-CSM), of the flow around a simplified Ahmed body, has been done in this work of thesis. The models used are two salient geometries from the experimental investigation performed in [1], and consist, in particular, in two notch-back body geometries. Six simulation are carried out in total, changing Reynolds number and back-light angle of the model’s rear part. The Reynolds numbers used, based on the height of the models and the free stream velocity, are Re = 10000, Re = 30000 and Re = 50000. The back-light angles of the slanted surface with respect to the horizontal roof surface, that characterizes the vehicle, are taken as B = 31.8◦ and B = 42◦ respectively. The experimental results in [1] have shown that, depending on the parameter B, asymmetric and symmetric averaged flow over the back-light and in the wake for a symmetric geometry can be observed. The aims of the present work of master thesis are principally two. The first aim is to investigate and confirm the influence of the parameter B on the presence of the asymmetry of the averaged flow, and confirm the features described in the experimental results. The second important aspect is to investigate and observe the influence of the second variable, the Reynolds number, in the developing of the asymmetric flow itself. The results have shown the presence of the mentioned asymmetry as well as an influence of the Reynolds number on it.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This archive provides supporting data with forcings, data and plotting scripts for the paper P. N. Blossey, C. S. Bretherton, A. Cheng, S. Endo, T. Heus, A. Lock and J. J. van der Dussen, 2016. CGILS Phase 2 LES intercomparison of response of subtropical marine low cloud regimes to CO2 quadrupling and a CMIP3-composite forcing change. J. Adv. Model. Earth Syst., Under revision.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a numerical study of the turbulent kinetic energy budget in the wake of cylinders undergoing Vortex-Induced Vibration (VIV). We show three-dimensional Large Eddy Simulations (LES) of an elastically mounted circular cylinder in the synchronization regime at Reynolds number of Re=8000. The Immersed Boundary Method (IBM) is used to account for the presence of the cylinder. The flow field in the wake is decomposed using the triple decomposition splitting the flow variables in mean, coherent and stochastic components. The energy transfer between these scales of motions are then studied and the results of the free oscillation are compared to those of a forced oscillation. The turbulent kinetic energy budget shows that the maximum amplitude of VIV is defined by the ability of the mean flow to feed energy to the coherent structures in the wake. At amplitudes above this maximum amplitude, the energy of the coherent structures needs to be fed additionally by small scale, stochastic energy in form of backscatter to sustain its motion. Furthermore, we demonstrate that the maximum amplitude of the VIV is defined by the integral length scale of the turbulence in the wake

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focus of the current dissertation is to study qualitatively the underlying physics of vortex-shedding and wake dynamics in long aspect-ratio aerodynamics in incompressible viscous flow through the use of the KLE method. We carried out a long series of numerical experiments in the cases of flow around the cylinder at low Reynolds numbers. The study of flow at low Reynolds numbers provides an insight in the fluid physics and also plays a critical role when applying to stalled turbine rotors. Many of the conclusions about the qualitative nature of the physical mechanisms characterizing vortex formation, shedding and further interaction analyzed here at low Re could be extended to other Re regimes and help to understand the separation of the boundary layers in airfoils and other aerodynamic surfaces. In the long run, it aims to provide a better understanding of the complex multi-physics problems involving fluid-structure-control interaction through improved mathematical computational models of the multi-physics process. Besides the scientific conclusions produced, the research work on streamlined and bluff-body condition will also serve as a valuable guide for the future design of blade aerodynamics and the placement of wind turbines and hydrakinetic turbines, increasing the efficiency in the use of expensive workforce, supplies, and infrastructure. After the introductory section describing the main fields of application of wind power and hydrokinetic turbines, we describe the main features and theoretical background of the numerical method used here. Then, we present the analysis of the numerical experimentation results for the oscillatory regime right before the onset of vortex shedding for circular cylinders. We verified the wake length of the closed near-wake behind the cylinder and analysed the decay of the wake at the wake formation region, and then studied the St-Re relationship at the Reynolds numbers before the wake sheds compared to the experimental data. We found a theoretical model that describes the time evolution of the amplitude of fluctuations in the vorticity field on the twin vortex wake, which accurately matches the numerical results in terms of the frequency of the oscillation and rate of decay. We also proposed a model based on an analog circuit that is able to interpret the concerning flow by reducing the number of degrees of freedom. It follows the idea of the non-linear oscillator and resembles the dynamics mechanism of the closed near-wake with a common configured sine wave oscillator. This low-dimensional circuital model may also help to understand the underlying physical mechanisms, related to vorticity transport, that give origin to those oscillations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To gain a better understanding of recent experiments on the turbulence-induced melting of a periodic array of vortices in a thin fluid film, we perform a direct numerical simulation of the two-dimensional Navier-Stokes equations forced such that, at low Reynolds numbers, the steady state of the film is a square lattice of vortices. We find that as we increase the Reynolds number, this lattice undergoes a series of nonequilibrium phase transitions, first to a crystal with a different reciprocal lattice and then to a sequence of crystals that oscillate in time. Initially, the temporal oscillations are periodic; this periodic behaviour becoming more and more complicated with increasing Reynolds number until the film enters a spatially disordered nonequilibrium statistical steady state that is turbulent. We study this sequence of transitions using fluid-dynamics measures, such as the Okubo-Weiss parameter that distinguishes between vortical and extensional regions in the flow, ideas from nonlinear dynamics, e.g. Poincare maps, and theoretical methods that have been developed to study the melting of an equilibrium crystal or the freezing of a liquid and that lead to a natural set of order parameters for the crystalline phases and spatial autocorrelation functions that characterize short- and long-range order in the turbulent and crystalline phases, respectively.