917 resultados para Computational Vaccinology
Resumo:
Plant-antivenom is a computational Websystem about medicinal plants with anti-venom properties. The system consists of a database of these plants, including scientific publications on this subject and amino acid sequences of active principles from venomous animals. The system relates these data allowing their integration through different search applications. For the development of the system, the first surveys were conducted in scientific literature, allowing the creation of a publication database in a library for reading and user interaction. Then, classes of categories were created, allowing the use of tags and the organization of content. This database on medicinal plants has information such as family, species, isolated compounds, activity, inhibited animal venoms, among others. Provision is made for submission of new information by registered users, by the use of wiki tools. Content submitted is released in accordance to permission rules defined by the system. The database on biological venom protein amino acid sequences was structured from the essential information from National Center for Biotechnology Information (NCBI). Plant-antivenom`s interface is simple, contributing to a fast and functional access to the system and the integration of different data registered on it. Plant-antivenom system is available on the Internet at http://gbi.fmrp.usp.br/plantantivenom.
Resumo:
We consider two viral strains competing against each other within individual hosts (at cellular level) and at population level (for infecting hosts) by studying two cases. In the first case, the strains do not mutate into each other. In this case, we found that each individual in the population can be infected by only one strain and that co-existence in the population is possible only when the strain that has the greater basic intracellular reproduction number, R (0c) , has the smaller population number R (0p) . Treatment against the one strain shifts the population equilibrium toward the other strain in a complicated way (see Appendix B). In the second case, we assume that the strain that has the greater intracellular number R (0c) can mutate into the other strain. In this case, individual hosts can be simultaneously infected by both strains (co-existence within the host). Treatment shifts the prevalence of the two strains within the hosts, depending on the mortality induced by the treatment, which is, in turn, dependent upon the doses given to each individual. The relative proportions of the strains at the population level, under treatment, depend both on the relative proportions within the hosts (which is determined by the dosage of treatment) and on the number of individuals treated per unit time, that is, the rate of treatment. Implications for cases of real diseases are briefly discussed.
Resumo:
In this paper we discuss implicit Taylor methods for stiff Ito stochastic differential equations. Based on the relationship between Ito stochastic integrals and backward stochastic integrals, we introduce three implicit Taylor methods: the implicit Euler-Taylor method with strong order 0.5, the implicit Milstein-Taylor method with strong order 1.0 and the implicit Taylor method with strong order 1.5. The mean-square stability properties of the implicit Euler-Taylor and Milstein-Taylor methods are much better than those of the corresponding semi-implicit Euler and Milstein methods and these two implicit methods can be used to solve stochastic differential equations which are stiff in both the deterministic and the stochastic components. Numerical results are reported to show the convergence properties and the stability properties of these three implicit Taylor methods. The stability analysis and numerical results show that the implicit Euler-Taylor and Milstein-Taylor methods are very promising methods for stiff stochastic differential equations.
Resumo:
A mixture model incorporating long-term survivors has been adopted in the field of biostatistics where some individuals may never experience the failure event under study. The surviving fractions may be considered as cured. In most applications, the survival times are assumed to be independent. However, when the survival data are obtained from a multi-centre clinical trial, it is conceived that the environ mental conditions and facilities shared within clinic affects the proportion cured as well as the failure risk for the uncured individuals. It necessitates a long-term survivor mixture model with random effects. In this paper, the long-term survivor mixture model is extended for the analysis of multivariate failure time data using the generalized linear mixed model (GLMM) approach. The proposed model is applied to analyse a numerical data set from a multi-centre clinical trial of carcinoma as an illustration. Some simulation experiments are performed to assess the applicability of the model based on the average biases of the estimates formed. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
A new wavelet-based method for solving population balance equations with simultaneous nucleation, growth and agglomeration is proposed, which uses wavelets to express the functions. The technique is very general, powerful and overcomes the crucial problems of numerical diffusion and stability that often characterize previous techniques in this area. It is also applicable to an arbitrary grid to control resolution and computational efficiency. The proposed technique has been tested for pure agglomeration, simultaneous nucleation and growth, and simultaneous growth and agglomeration. In all cases, the predicted and analytical particle size distributions are in excellent agreement. The presence of moving sharp fronts can be addressed without the prior investigation of the characteristics of the processes. (C) 2001 Published by Elsevier Science Ltd.
Resumo:
In this paper a methodology for integrated multivariate monitoring and control of biological wastewater treatment plants during extreme events is presented. To monitor the process, on-line dynamic principal component analysis (PCA) is performed on the process data to extract the principal components that represent the underlying mechanisms of the process. Fuzzy c-means (FCM) clustering is used to classify the operational state. Performing clustering on scores from PCA solves computational problems as well as increases robustness due to noise attenuation. The class-membership information from FCM is used to derive adequate control set points for the local control loops. The methodology is illustrated by a simulation study of a biological wastewater treatment plant, on which disturbances of various types are imposed. The results show that the methodology can be used to determine and co-ordinate control actions in order to shift the control objective and improve the effluent quality.
Resumo:
We compare the performance of two different low-storage filter diagonalisation (LSFD) strategies in the calculation of complex resonance energies of the HO2, radical. The first is carried out within a complex-symmetric Lanczos subspace representation [H. Zhang, S.C. Smith, Phys. Chem. Chem. Phys. 3 (2001) 2281]. The second involves harmonic inversion of a real autocorrelation function obtained via a damped Chebychev recursion [V.A. Mandelshtam, H.S. Taylor, J. Chem. Phys. 107 (1997) 6756]. We find that while the Chebychev approach has the advantage of utilizing real algebra in the time-consuming process of generating the vector recursion, the Lanczos, method (using complex vectors) requires fewer iterations, especially for low-energy part of the spectrum. The overall efficiency in calculating resonances for these two methods is comparable for this challenging system. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Computational simulations of the title reaction are presented, covering a temperature range from 300 to 2000 K. At lower temperatures we find that initial formation of the cyclopropene complex by addition of methylene to acetylene is irreversible, as is the stabilisation process via collisional energy transfer. Product branching between propargyl and the stable isomers is predicted at 300 K as a function of pressure for the first time. At intermediate temperatures (1200 K), complex temporal evolution involving multiple steady states begins to emerge. At high temperatures (2000 K) the timescale for subsequent unimolecular decay of thermalized intermediates begins to impinge on the timescale for reaction of methylene, such that the rate of formation of propargyl product does not admit a simple analysis in terms of a single time-independent rate constant until the methylene supply becomes depleted. Likewise, at the elevated temperatures the thermalized intermediates cannot be regarded as irreversible product channels. Our solution algorithm involves spectral propagation of a symmetrised version of the discretized master equation matrix, and is implemented in a high precision environment which makes hitherto unachievable low-temperature modelling a reality.
Resumo:
A new method is presented to determine an accurate eigendecomposition of difficult low temperature unimolecular master equation problems. Based on a generalisation of the Nesbet method, the new method is capable of achieving complete spectral resolution of the master equation matrix with relative accuracy in the eigenvectors. The method is applied to a test case of the decomposition of ethane at 300 K from a microcanonical initial population with energy transfer modelled by both Ergodic Collision Theory and the exponential-down model. The fact that quadruple precision (16-byte) arithmetic is required irrespective of the eigensolution method used is demonstrated. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Resonance phenomena associated with the unimolecular dissociation of HO2 have been investigated quantum-mechanically by the Lanczos homogeneous filter diagonalization (LHFD) method. The calculated resonance energies, rates (widths), and product state distributions are compared to results from an autocorrelation function-based filter diagonalization (ACFFD) method. For calculating resonance wave functions via ACFFD, an analytical expression for the expansion coefficients of the modified Chebyshev polynomials is introduced. Both dissociation rates and product state distributions of O-2 show strong fluctuations, indicating the dissociation of HO2 is essentially irregular. (C) 2001 American Institute of Physics.
Resumo:
We develop a new iterative filter diagonalization (FD) scheme based on Lanczos subspaces and demonstrate its application to the calculation of bound-state and resonance eigenvalues. The new scheme combines the Lanczos three-term vector recursion for the generation of a tridiagonal representation of the Hamiltonian with a three-term scalar recursion to generate filtered states within the Lanczos representation. Eigenstates in the energy windows of interest can then be obtained by solving a small generalized eigenvalue problem in the subspace spanned by the filtered states. The scalar filtering recursion is based on the homogeneous eigenvalue equation of the tridiagonal representation of the Hamiltonian, and is simpler and more efficient than our previous quasi-minimum-residual filter diagonalization (QMRFD) scheme (H. G. Yu and S. C. Smith, Chem. Phys. Lett., 1998, 283, 69), which was based on solving for the action of the Green operator via an inhomogeneous equation. A low-storage method for the construction of Hamiltonian and overlap matrix elements in the filtered-basis representation is devised, in which contributions to the matrix elements are computed simultaneously as the recursion proceeds, allowing coefficients of the filtered states to be discarded once their contribution has been evaluated. Application to the HO2 system shows that the new scheme is highly efficient and can generate eigenvalues with the same numerical accuracy as the basic Lanczos algorithm.
Resumo:
Time-dependent wavepacket evolution techniques demand the action of the propagator, exp(-iHt/(h)over-bar), on a suitable initial wavepacket. When a complex absorbing potential is added to the Hamiltonian for combating unwanted reflection effects, polynomial expansions of the propagator are selected on their ability to cope with non-Hermiticity. An efficient subspace implementation of the Newton polynomial expansion scheme that requires fewer dense matrix-vector multiplications than its grid-based counterpart has been devised. Performance improvements are illustrated with some benchmark one and two-dimensional examples. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Computer simulation of dynamical systems involves a phase space which is the finite set of machine arithmetic. Rounding state values of the continuous system to this grid yields a spatially discrete dynamical system, often with different dynamical behaviour. Discretization of an invertible smooth system gives a system with set-valued negative semitrajectories. As the grid is refined, asymptotic behaviour of the semitrajectories follows probabilistic laws which correspond to a set-valued Markov chain, whose transition probabilities can be explicitly calculated. The results are illustrated for two-dimensional dynamical systems obtained by discretization of fractional linear transformations of the unit disc in the complex plane.
Resumo:
Binning and truncation of data are common in data analysis and machine learning. This paper addresses the problem of fitting mixture densities to multivariate binned and truncated data. The EM approach proposed by McLachlan and Jones (Biometrics, 44: 2, 571-578, 1988) for the univariate case is generalized to multivariate measurements. The multivariate solution requires the evaluation of multidimensional integrals over each bin at each iteration of the EM procedure. Naive implementation of the procedure can lead to computationally inefficient results. To reduce the computational cost a number of straightforward numerical techniques are proposed. Results on simulated data indicate that the proposed methods can achieve significant computational gains with no loss in the accuracy of the final parameter estimates. Furthermore, experimental results suggest that with a sufficient number of bins and data points it is possible to estimate the true underlying density almost as well as if the data were not binned. The paper concludes with a brief description of an application of this approach to diagnosis of iron deficiency anemia, in the context of binned and truncated bivariate measurements of volume and hemoglobin concentration from an individual's red blood cells.