902 resultados para Composite materials -- Fatigue
Resumo:
Standard Test Methods (e.g. ASTM, DIN) for materials characterization in general, and for fatigue in particular, do not contemplate specimens with complex geometries, as well as the combination of axial and in-plane bending loads in their methodologies. The present study refers to some patents and the new configuration or configurations of specimens (non-standardized by the status quo of test methods) and a device developed to induce axial and bending combined forces resultants from axial loads applied by any one test equipment (dynamic or monotonic) which possesses such limitation, towards obtaining more realistic results on the fatigue behavior, or even basic mechanical properties, from geometrically complex structures. Motivated by a specific and geometrically complex aeronautic structure (motor-cradle), non-standardized welded tubular specimens made from AISI 4130 steel were fatigue-tested at room temperature, by using a constant amplitude sinusoidal load of 20 Hz frequency, load ratio R = 0.1 with and without the above referred auxiliary fatigue apparatus. The results showed the fatigue apparatus was efficient for introducing higher stress concentration factor at the welded specimen joints, consequently reducing the fatigue strength when compared to other conditions. From the obtained results it is possible to infer that with small modifications the proposed apparatus will be capable to test a great variety of specimen configurations such as: squared tubes and plates with welded or melted junctions, as well as other materials such as aluminum, titanium, composites, polymeric, plastics, etc. © 2009 Bentham Science Publishers Ltd.
Resumo:
Aramid fiber reinforced polymer composites have been used in a wide variety of applications, such as aerospace, marine, sporting equipment and in the defense sector, due to their outstanding properties at low density. The most widely adopted procedure to investigate the repair of composites has been by repairing damages simulated in composite specimens. This work presents the structural repair influence on tensile and fatigue properties of a typical aramid fiber/epoxy composite used in the aerospace industry. According to this work, the aramid/epoxy composites with and without repair present tensile strength values of 618 and 680MPa, respectively, and tensile modulus of 26.5 and 30.1 GPa, respectively. Therefore, the fatigue results show that in loads higher than 170 MPa, both composites present a low life cycle (lower than 200,000 cycles) and the repaired aramid/epoxy composite presented low fatigue resistance in low and high cycle when compared with non-repaired composite. With these results, it is possible to observe a decrease of the measured mechanical properties of the repaired composites.
Resumo:
The purpose of this study was to evaluate the transmittance of seven different composite resins. Ten specimens were prepared (10 mm diameter, 2 mm thickness) for each experimental group, as follows: G1- Charisma® A 2 (Heraeus-Kulzer); G2- Filtek™ Supreme A 2E (3M/ESPE); G3- Filtek™ Supreme A2B (3M/ESPE); G4-Filtek™ Supreme YT (3M/ESPE); G5- Esthet-X® A2 (Dentsply); G6- Esthet-X® YE (Dentsply); G7- Durafill® A 2 (Heraeus-Kulzer) and G8- Filtek™ Z-100 A2 (3M/ESPE). The transmittance mode was measured using a UV-visible spectrophotometer (Cary Instruments) at 400-760 nm. The specimens were evaluated at three different times: zero hour (initial), 24 hours and 10 days after immersion in artificial saliva. The differences in transmittance were determined by two-way analysis of variance (ANOVA) and Tukey's test. The various composite resins showed significant differences in the wavelength dependence of transmittance. The mean values of transmittance increased significantly, with wavelengths increasing from 400 to 760 nm. The performance of the experimental groups was similar in terms of immersion time, considering that at time zero and after 10 days, all the groups showed similar results, which were statistically higher than the values obtained after 24 hours of immersion. The Filtek™ Supreme YT composite resin presented the highest mean transmittance values along the wavelengths at the three measured times. Esthet-X® YE and Durafill® yielded similar mean transmittance values, which were higher than those of the other groups. This study shows that the transmittance values of composite resins are directly related with the type, size and amount of inorganic filler particles.
Resumo:
The aim of this study is to evaluate the flexural resistance of three types of restorative materials: compomer (Freedom), resin-modified glass-ionomer (Vitremer) and composite resin (Esthet-X), observing whether the application of bleaching agent can cause alterations of their flexural properties. Sixty samples were made using a 10 x 1 x 1 mm brass mold, and divided into three groups: G1- Freedom (SDI); G2- Vitremer (3M ESPE); G3- Esthet-X (Dentsply). On half of the samples of each group (10 samples) the bleaching treatment was applied and the other half used as control, was stored in distilled water at a temperature of 37 degrees C. Whiteness HP Maxx bleaching system was applied on the sample surface following the manufacturer's recommendations, simulating the bleaching treatment at the clinic. After this period, a flexural strength (three-point bending) test was conducted using (EMIC DL 1000) machine until the samples fractured. The data were submitted to ANOVA and Tukey tests. Of the restorative materials studied, G3-(87.24 +/- 31.40 MPa) presented the highest flexural strength, followed by G1-(61.67 +/- 21.32 MPa) and G2-(61.67 +/- 21.32 MPa). There was a statistical difference in flexural strength after the bleaching treatment. It was concluded that the use of a beaching agent can promote significant alteration of the flexural strength of these restorative materials.
Resumo:
This study evaluated the Knoop hardness of a dual-cured resin cement (Rely-X ARC) activated solely by chemical reaction (control group) or by chemical / physical mode, light-cured through a 1.5 mm thick ceramic (HeraCeram) or composite (Artglass) disc. Light curing was carried out using conventional halogen light (XL2500) for 40 s (QTH); light emitting diodes (Ultrablue Is) for 40 s (LED); and Xenon plasma arc (Apollo 95E) for 3 s (PAC). Bovine incisors had their buccal face flattened and hybridized. On this surface a rubber mold (5 mm in diameter and 1 mm in height) was bulk filled with the resin cement. A polyester strip was seated for direct light curing or through the discs of veneering materials. After dry storage in the dark (24 h 37°C), the samples (n = 5) were sectioned for hardness (KHN) measurements, taken in a microhardness tester (50 gF load 15 s). The data were statistically analyzed by ANOVA and Tukey's test (α = 0.05). The cement presented higher Knoop hardness values with Artglass for QTH and LED, compared to HeraCeram. The control group and the PAC/Artglass group showed lower hardness values compared to the groups light-cured with QTH and LED. PAC/HeraCeram resulted in the worst combination for cement hardness values. © 2009 Sociedade Brasileira de Pesquisa Odontológica.
Resumo:
Thermal transformations on microalloyed steels can produce multiphase microstructures with different amounts of ferrite, martensite, bainite and retained austenite. These different phases, with distinct morphologies, are determinant of the mechanical behavior of the steel and can, for instance, affect the crack path or promote crack shielding, thus resulting in changes on its propagation rate under cyclic loading. The aim of the present work is to evaluate the effects of microstructure on the tensile strength and fatigue crack growth (FCG) behaviour of a 0.08%C-1,5%Mn (wt. pct.) microalloyed steel, recently developed by a Brazilian steel maker under the designation of RD480. This steel is being considered as a promising alternative to replace low carbon steel in wheel components for the automotive industry. Various microstructural conditions were obtained by means of heat treatments followed by water quench, in which the material samples were kept at the temperatures of 800, 950 and 1200 °C. In order to describe the FCG behavior, two models were tested: the conventional Paris equation and a new exponential equation developed for materials showing non-linear FCG behavior. The results allowed correlating the tensile properties and crack growth resistance to the microstructural features. It is also shown that the Region II FCG curves of the dual and multiphase microstructural conditions present crack growth transitions that are better modeled by dividing them in two parts. The fracture surfaces of the fatigued samples were observed via scanning electron microscopy in order to reveal the fracture mechanisms presented by the various material conditions. © 2010 Published by Elsevier Ltd.
Resumo:
Esthetic orthodontic appliances continue to appeal to more patients, which results in objections to extraction spaces that remain for several months during orthodontic therapy. This has led orthodontists to design temporary pontics that fill extraction sites and that can be reduced as the spaces close. This report describes a simple, efficient, and expeditious technique for making such pontics. © 2010 Quintessence Publishing Co, Inc.
Resumo:
This study compared the color fidelity of different composite resins with their registration in the Vita Classical Shade Guide. Using a prefabricated Teflon mold, 120 specimens were divided into four groups fn - 30), according to the resin tested. Three subgroups (a = 10) were prepared for each resin group; these subgroups tested enamel shade, dentin shade, and enamel and dentin shade. Three measurements were performed to verily whether the tooth shade matched that of the Vita Classical Shade Guide. The color was evaluated and the shade variations were calculated. The data were submitted to a three-way AN OVA test (time, color match, and composite type), followed by Tukey's test. It was concluded that all composite resins showed color differences in relation to the Vita Classical Shade Guide.
Resumo:
This study proposes a pH-cycling model for verifying the dose-response relationship in fluoride-releasing materials on remineralization in vitro. Sixty bovine enamel blocks were selected for the surface microhardness test (SMH 1). Artificial caries lesions were induced and surface microhardness test (SMH 2) was performed. Forty-eight specimens were prepared with Z 100, Fluroshield, Vitremer and Vitremer 1/4 diluted - powder/liquid, and subjected to a pH-cycling model to promote remineralization. After pH-cycling, final surface microhardness (SMH 3) was assessed to calculate percent recovery of surface microhardness (%SMH R). Fluoride present in enamel (μg F/mm 3) and in the pH-cycling solutions (μg F) was measured. Cross-sectional microhardness was used to calculate mineral content (ΔZ). There was no significant difference between Z 100 and control groups on analysis performed on - %SMH R, ΔZ, μ F and μ F/mm 3 (p>0.05). Results showed a positive correlation between %SMH R and μg F/mm 3 (r=0.9770; p=0.004), %SMH R and μg F (r=0.9939; p=0.0000001), DZ and μg F/mm 3 (r=0.9853; p=0.0002), ΔZ and μg F (r=0.9975; p=0.0000001) and between μg F/mm 3 and μg F (r=0.9819; p=0.001). The pH-cycling model proposed was able to verify in vitro dose-response relationship of fluoride-releasing materials on remineralization.
Resumo:
The objective of this study was to evaluate the effects of maintenance therapy with or without the use of 0.12% chlorhexidine in the periodontal tissues of patients with diabetes mellitus who had carious lesions restored with composed resin. Twenty patients were selected, all of whom had diabetes mellitus in addition to carious cervical lesions in previously treated teeth. After 90 days, improvement in plaque and gingival indices and probing depth were noticed among patients in the group that received 0.12% chlorhexidine.
Resumo:
The aluminum alloy 2524 (Al-Cu-Mg) was developed during the 90s mainly to be employed in aircraft fuselage panels, replacing the standard Al 2024. In the present analysis the fatigue crack growth (FCG) behavior of 2524-T3 was investigated, regarding the influence of three parameters: load ratio, pre strain and crack plane orientation of the material. The pre strain of aluminum alloys is usually performed in order to obtain a more homogeneous precipitates distribution, accompanied by an increase in the yield strength. In this work, it was evaluated the resistance of Al 2524-T3 sheet samples to the fatigue crack growth, having L-T and T-L crack orientations. FCG tests were performed under constant amplitude loading at three distinct positive load ratios. The three material conditions were tested: as received(AR), pre strained longitudinally (SL) and transversally (ST) in relation to rolling direction. In order to describe FCG behavior, two-parameter kinetic equations were compared: a Paris-type potential model and a new exponential equation introduced in a previous work conducted by our research group. It was observed that the exponential model, which takes into account the deviations from linearity presented by da/dN versus AK data, describes more adequately the FCG behavior of Al 224-T3 in relation to load ratio, pre strain effects and crack plane orientation. © 2011 Published by Elsevier Ltd.
Resumo:
Objectives: The objective of this study was to evaluate the clinical performance of 124 non-carious cervical lesion restorations at 12 months. Materials And Methods: Three study groups were formed according to the material and technique used. All teeth received 37% phosphoric acid etching in enamel and dentin. The teeth of Group I received the conventional adhesive system Scotch Bond Multi Purpose, followed by resin composite Filtek Z350; teeth of Group II were restored with resin-modified glassionomer cement Fuji II LC; teeth of Group III were restored with the same resin-modified glass-ionomer cement-however, before it was inserted, 2 coats of primer of the Scotch Bond Multi Purpose adhesive system were applied to dentinal tissue. The teeth were evaluated by 2 examiners with regard to the factors of retention, marginal adaptation, marginal discoloration, color alteration, presence of marginal caries lesion, anatomic shape, and sensitivity. Results: Application of the Kruskal-Wallis test showed no statistically significant difference for anatomic shape, marginal discoloration, color alteration, caries lesion, marginal adaptation, and sensitivity among the three study groups, but the variable retention presented statistically significant difference at 12 months, with Group III presenting a behavior superior to that of Group II but similar to that of Group I. Conclusion: The analyzed restorations of non-carious cervical lesions presented a good clinical performance at 12 months. © 2012 Nova Science Publishers, Inc.
Resumo:
This clinical study assessed the performance of posterior composite resins applied with the Adper™ Single Bond Plus (SB) and Adper ™ Scotchbond SE (SE) adhesive systems and Filtek ™ Supreme Plus composite resin, using modified US Public Health Service criteria. A total of 97 restorations were placed in posterior teeth by two calibrated operators. Application of the materials followed manufacturers' instructions. The restorations were evaluated by two examiners at baseline and after one year. Statistical analyses were conducted using the proportion test at a significance level of 5% (p<0.05). All the restorations evaluated (ie, 100%) received an alpha rating for the criteria of marginal discoloration and marginal integrity at baseline. At one year, for marginal discoloration, 64.6% of SB and 61.2% of SE received an alpha rating. For marginal integrity, 72.9% of SB and 77.6% of SE received an alpha rating. The other restorations received bravo ratings for both criteria. None of the teeth that received the restorative systems presented caries lesions around the restorations. A total of eight teeth presented postoperative sensitivity one week after baseline, five with SB and three with SE; the symptom had disappeared one year later. One year later, composite resin restorations using either adhesive system showed satisfactory clinical performance.