964 resultados para Comparative genomics
Resumo:
The crystal structures, electronic spectra, and Cu2p XPS of Cu(III) complexes Na4H[Cu(H2TeO6)(2)]. 17H(2)O and Na4K[Cu(HlO(6))(2)]. 12H(2)O have been described. The characterizations of a Cu(III) atom in a complex are as follows: (i) In a square-planar coordination, the average bond length of Cu-O is 0.183 nm, shorter than the 0.190-0.200 nm found for a Cu(II) complex. (2) The ''blue shift'' occurs for d-d transitions in the electronic spectrum of the Cu(III) complex compared to those of its related Cu(II) complex, resulting from the higher valence state. (3) Cu(III) compounds with CuO4 square-planar coordination are expected to be diamagnetic whereas Cu(II) compounds to be paramagnetic. (4) Comprehensive investigations on Cu2p XPS show that the binding energy of Cu2p(3/2) of a pure Cu(III) compound is about 2.0 eV higher than that of its corresponding Cu(II) compound: the shake-up satellites do not appear in the Cu2p XPS for a pure diamagnetic Cu(III) compound, the same as found for a diamagnetic Ni(II) compound: the FWHM of the signal of Cu2p XPS may become broader for Cu(III) compound because its core hole's lifetime shortens due to the higher valence state of copper. (C) 1995 Academic Press, Inc.
Resumo:
Flavin adenine dinucleotide (FAD) was modified onto the highly oriented pyrolytic graphite (hopg) and glassy carbon electrode (gee) surfaces with three methods, respectively. Corresponding image analysis for FAD-modified hopg surfaces has been performed by scanning tunnelling microscope (STM) for the first time. The molecular resolution STM image of FAD adsorbed on the freshly-cleaved hopg was obtained, the quantitative size determination suggests that the FAD molecules adsorb side lying on the substrate surface. The anodization treatment of hopg surface yields many pits, which were clearly observed under STM. These pits provide active sites on the hopg surface for modification and the treated hopg can strongly adsorb FAD molecules, the latter exhibiting an irregular cluster structure on such a surface. When FAD was electrochemically deposited on the substrate surface, a chain structure was successfully observed. The adsorbed FAD on anodized glassy carbon electrode (gee) surface can effectively catalyze the reduction of glucose oxidase, hemoglobin and myoglobin, with a large decrease in the overvoltage, whereas the deposited FAD film exhibits excellent electrocatalysis towards dioxygen reduction.
Resumo:
Ca4Y6(SiO4)(6)O:A (A = Pb2+, Eu3+, Tb3+, Dy3+) phosphors have been prepared by two methods: the sol-gel method and the conventional dry method. The crystallization processes and the luminescence characteristics of the phosphors were studied, The sol-gel method features low-temperature formation of the phosphor, leading to successful preparation of Pb2+-activated phosphors which could not be prepared by the dry method at high temperature. The (4f)(8-)(4f)(7)(5d)(1) absorption band of Tb3+ and the charge-transfer (CT) band of Eu3+ have higher energies and narrower half-widths in the sol-gel-derived phosphors than in the phosphors prepared by the dry method, respectively. The Tb3+ and Dy3+ ions show stronger emission in the former than in the latter. Both the yellow-to-blue intensity ratio (Y:B) of Dy3+ and the red-to-orange intensity ratio (R:O) of Eu3+ in the sol-gel-derived phosphors are smaller than those for the phosphors derived by the dry method.
Resumo:
The performance of Kalman filtering, synchronous excitation and numerical derivative techniques for the resolution of overlapping emission spectra in spectrofluorimetry was studied. The extent of spectrum overlap was quantitatively described by the separation degree D(s), defined as the ratio of the peak separation to the full width at half-maximum of the emission spectrum of the interferent. For the system of Rhodamine B and Rhodamine 6G with a large D(s) of about 0.4, both Kalman filtering and synchronous techniques are able to resolve the overlapping spectra well and to give satisfactory results while the derivative spectra are still overlapped with each other. Moreover, the sensitivities are greatly decreased in derivative techniques. For more closely spaced spectra emitted by the complexes of Al and Zn with 7-iodo-8-hydroxyquinoline-5-sulphonic acid (Ferron)-hexadecyltrimethylammonium bromide, the synchronous excitation technique cannot completely separate the overlapping peaks, although it increases the separation degree from 0.25 in the conventional spectra to 0.37 in the synchronous spectra. On the other hand, Kalman filtering is capable of resolving this system. When the Al/Zn intensity ratio at the central wavelength of Al was > 1, however, the accuracy and precision of the estimates for Zn concentration produced by the Kalman filter became worse. In this event, the combination of synchronous excitation and Kalman filtering can much improve the analytical results.
Resumo:
The glycoproteins and glycolipids from membranes of virulent strain Z and avirulent strain M of Mycoplasma hyopneumoniae have been compared. The proteins and the glycoproteins were identified by SDS-polyacrylamide gel electrophoresis and concanavalin A-biotin labeling, respectively. The membrane preparation contained approximately 34 protein bands with molecular weights between 20 KD and 100 KD. The concanavalin A-biotin system reacted with a glycoprotein of a molecular weight of approximately 28,000 from avirulent strain M and did not react with the correspondent band from virulent strain Z. The membrane glycolipids of both strains consisted of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), and the percentages of 16:0, 18:0, and 18:1 fatty acids comprised more than 80% of the total fatty acids of membrane glycolipids. The 18:0 fatty acid of MGDG in avirulent strain M was twofold higher than that of virulent strain Z.
Resumo:
The endostyle of invertebrate chordates is a pharyngeal organ that is thought to be homologous with the follicular thyroid of vertebrates. Although thyroid-like features such as iodine-concentrating and peroxidase activities are located in the dorsolateral part of both ascidian and amphioxus endostyles, the structural organization and numbers of functional units are different. To estimate phylogenetic relationships of each functional zone with special reference to the evolution of the thyroid, we have investigated, in ascidian and amphioxus, the expression patterns of thyroid-related transcription factors such as TTF-2/MoxE4 and Pax2/5/8, as well as the forkhead transcription factors FoxQ1 and FoxA. Comparative gene expression analyses depicted an overall similarity between ascidians and amphioxus endostyles, while differences in expression patterns of these genes might be specifically related to the addition or elimination of a pair of glandular zones. Expressions of Ci-FoxE and BbFoxE4 suggest that the ancestral FoxE class might have been recruited for the formation of thyroid-like region in a possible common ancestor of chordates. Furthermore, coexpression of FoxE4, Pax2/5/8, and TPO in the dorsolateral part of both ascidian and amphioxus endostyles suggests that genetic basis of the thyroid function was already in place before the vertebrate lineage. (c) 2005 Wiley-Liss, Inc.
Resumo:
This study aimed at evaluating the ploidy effects on growth performances of Chinese shrimp (Fenneropenaeus chinensis Osbeck, 1765) reared in different salinities under laboratory conditions. In the acute salinity experiment, there was no difference (P > 0.05) in tolerance observed in triploid and diploid shrimp due to abrupt salinity changes. The lethal salinity for 50% of the individuals in 96 h at 23-25 degrees C was about 2 g L-1 in both triploids and diploids. While for the chronic salinity experiment, statistical analyses confirmed that the differences in growth performances including the specific growth rate (SGR), the feeding rate (FR), feed conversion efficiency (FCE) and intermoult period (IP) between triploid and diploid were related to salinity. Diploid shrimp reared in 20 g L-1 exhibited highest SGR (P < 0.05), while triploids performed well in 20 and 30 g L-1 salinities (P < 0.05). Based on the survival and growth data, the optimal salinity for the culture of diploid F. chinensis should be 20 g L-1 and for triploids it should be between 20 and 30 g L-1.
Resumo:
Background: Serine/threonine kinases (STKs) have been found in an increasing number of prokaryotes, showing important roles in signal transduction that supplement the well known role of two-component system. Cyanobacteria are photoautotrophic prokaryotes able to grow in a wide range of ecological environments, and their signal transduction systems are important in adaptation to the environment. Sequence information from several cyanobacterial genomes offers a unique opportunity to conduct a comprehensive comparative analysis of this kinase family. In this study, we extracted information regarding Ser/Thr kinases from 21 species of sequenced cyanobacteria and investigated their diversity, conservation, domain structure, and evolution. Results: 286 putative STK homologues were identified. STKs are absent in four Prochlorococcus strains and one marine Synechococcus strain and abundant in filamentous nitrogen-fixing cyanobacteria. Motifs and invariant amino acids typical in eukaryotic STKs were conserved well in these proteins, and six more cyanobacteria- or bacteria-specific conserved residues were found. These STK proteins were classified into three major families according to their domain structures. Fourteen types and a total of 131 additional domains were identified, some of which are reported to participate in the recognition of signals or substrates. Cyanobacterial STKs show rather complicated phylogenetic relationships that correspond poorly with phylogenies based on 16S rRNA and those based on additional domains. Conclusion: The number of STK genes in different cyanobacteria is the result of the genome size, ecophysiology, and physiological properties of the organism. Similar conserved motifs and amino acids indicate that cyanobacterial STKs make use of a similar catalytic mechanism as eukaryotic STKs. Gene gain-and-loss is significant during STK evolution, along with domain shuffling and insertion. This study has established an overall framework of sequence-structure-function interactions for the STK gene family, which may facilitate further studies of the role of STKs in various organisms.
Resumo:
Background: Serine/threonine kinases (STKs) have been found in an increasing number of prokaryotes, showing important roles in signal transduction that supplement the well known role of two-component system. Cyanobacteria are photoautotrophic prokaryotes able to grow in a wide range of ecological environments, and their signal transduction systems are important in adaptation to the environment. Sequence information from several cyanobacterial genomes offers a unique opportunity to conduct a comprehensive comparative analysis of this kinase family. In this study, we extracted information regarding Ser/Thr kinases from 21 species of sequenced cyanobacteria and investigated their diversity, conservation, domain structure, and evolution. Results: 286 putative STK homologues were identified. STKs are absent in four Prochlorococcus strains and one marine Synechococcus strain and abundant in filamentous nitrogen-fixing cyanobacteria. Motifs and invariant amino acids typical in eukaryotic STKs were conserved well in these proteins, and six more cyanobacteria- or bacteria-specific conserved residues were found. These STK proteins were classified into three major families according to their domain structures. Fourteen types and a total of 131 additional domains were identified, some of which are reported to participate in the recognition of signals or substrates. Cyanobacterial STKs show rather complicated phylogenetic relationships that correspond poorly with phylogenies based on 16S rRNA and those based on additional domains. Conclusion: The number of STK genes in different cyanobacteria is the result of the genome size, ecophysiology, and physiological properties of the organism. Similar conserved motifs and amino acids indicate that cyanobacterial STKs make use of a similar catalytic mechanism as eukaryotic STKs. Gene gain-and-loss is significant during STK evolution, along with domain shuffling and insertion. This study has established an overall framework of sequence-structure-function interactions for the STK gene family, which may facilitate further studies of the role of STKs in various organisms.
Genome-wide analysis of restriction-modification system in unicellular and filamentous cyanobacteria
Resumo:
Cyanobacteria are an ancient group of gram-negative bacteria with strong genome size variation ranging from 1.6 to 9.1 Mb. Here, we first retrieved all the putative restriction-modification (RM) genes in the draft genome of Spirulina and then performed a range of comparative and bioinformatic analyses on RM genes from unicellular and filamentous cyanobacterial genomes. We have identified 6 gene clusters containing putative Type I RMs and 11 putative Type II RMs or the solitary methyltransferases (MTases). RT-PCR analysis reveals that 6 of 18 MTases are not expressed in Spirulina, whereas one hsdM gene, with a mutated cognate hsdS, was detected to be expressed. Our results indicate that the number of RM genes in filamentous cyanobacteria is significantly higher than in unicellular species, and this expansion of RM systems in filamentous cyanobacteria may be related to their wide range of ecological tolerance. Furthermore, a coevolutionary pattern is found between hsdM and hsdR, with a large number of site pairs positively or negatively correlated, indicating the functional importance of these pairing interactions between their tertiary structures. No evidence for positive selection is found for the majority of RMs, e. g., hsdM, hsdS, hsdR, and Type II restriction endonuclease gene families, while a group of MTases exhibit a remarkable signature of adaptive evolution. Sites and genes identified here to have been under positive selection would provide targets for further research on their structural and functional evaluations.
Resumo:
Hypoxia, as one suboptimal environmental condition, can affect the physiological state of shrimp during pond aquaculture. To better understand the mechanism of response to hypoxic stress in Chinese shrimp Fenneropenaeus chinensis, proteome research approach was utilized. Differentially expressed proteins of hepatopancreas in adult Chinese shrimp between the control and hypoxia-stressed groups were screened. By 2-DE analysis, 67 spots showed obvious changes after hypoxia. Using LC-ESI-MS/MS, 51 spots representing 33 proteins were identified including preamylase, arginine kinase, phosphopyruvate hydratase, citrate synthase, ATP synthase alpha subunit, chymotrypsin BI, chitinase, ferritin, C-type lectin receptors, transketolase, formylglutathione hydrolase, formyltetrahydrofolate dehydrogenase, aldehyde dehydrogenase, glutathione peroxidase, cytosolic manganese superoxide dismutase, protein disulfide isomerase, beta-actin, oncoprotem nm23, crustacyanin-Cl and so on. These proteins could be functionally classified into several groups such as proteins related to energy production, metabolism-related proteins, immune-related proteins, antioxidant proteins, chaperones, cytoskeleton proteins and ungrouped proteins. The transcription levels of ten selected genes encode the identified proteins were analyzed by real-time PCR at different sampling times of hypoxia. This study is the first analysis of differentially expressed proteins in the hepatopancreas of shrimp after hypoxia and provides a new insight for further study in hypoxic stress response of shrimp at the protein level.
Resumo:
The C-phycocyanin and the R-phycoerythrin were purified from the blue-green alga Spirulina platensis and red alga Polysiphonia urceolata respectively. Both sodium periodate and glutaraldehyde are effective coupling agents being capable of constructing the R-phycoerythrin-C-phycocyanin conjugate, which was also called phycobiliproteins energy transfer model. The two artificial conjugates constructed with different methods were purified by Sephadex G-200 chromatography respectively. Spectra analysis indicated that energy transfer occurred in the two conjugates. The conjugate with sodium periodate had the higher efficiency of energy transfer than that with glutaraldehyde conjugate.
Resumo:
By mild PAGE method, 11, 11, 7 and 9 chlorophyll-protein complexes were isolated from two species of siphonous green algae ( Codium fragile (Sur.) Harlot and Bryopsis corticulans Setch.), green alga (Ulothrix flacca (Dillw.) Thur.), and spinach (Spinacia oleracea Mill.), respectively. Apparent molecular weights, Chi a/b ratios, distribution of chlorophyll, absorption spectra, low temperature fluorescence spectra of these complexes were determined, and compared with one another. PS I complexes of two siphonous green algae are larger in apparent molecular weight because of the attachment of relative highly aggregated LHC I. Four isolated light-harvesting complexes of PSII are all siphonaxanthin-Chl a/b-protein complexes, and they are not monomers and oligomers like those in higher plants. Especially, the absence of 730 nn fluorescence in PS I complexes indicates a distinct structure and energy transfer pattern.
Resumo:
A gradient reversed-phase high-performance liquid chromatography (HPLC) method using a C30 column was developed for the simultaneous determination of astaxanthin, astaxanthin monoesters and astaxanthin diesters in the green algae Chlorococcum sp., Chlorella zofingiensis, Haematococcus pluvialis and the mutant E1, which was obtained from the mutagenesis of H. pluvialis by exposure to UV-irradiation and ethyl methanesulphonate (EMS) with subsequent screening using nicotine. The results showed that the contents of total astaxanthins including free astaxanthin and astaxanthin esters ranged from 1.4 to 30.9 mg/g dry biomass in these green algae. The lower total astaxanthin levels (< 2 mg/g dry biomass) were detected in the green algae Chlorococcum sp. and C. zofingiensis. The higher total astaxanthin levels (> 16 mg/g dry biomass) were found in the green alga H. pluvialis and its mutant E1. It is notable that the mutant E1 is found to have considerably higher amounts of total astaxanthin (30.9 mg/g) as compared to the wild strain of H. pluvialis (16.1 mg/g). This indicates that UV-irradiation and EMS compound mutagenesis with subsequent screening using nicotine is an effective method for breeding of a high-producing astaxanthin strain of H. pluvialis. In addition, the green alga C. zofingiensis had a remarkably higher percentage of astaxanthin diesters (76.3% of total astaxanthins) and a remarkably lower percentage of astaxanthin monoesters (18.0% of total astaxanthins) in comparison with H. pluvialis (35.5% for diesters and 60.9% for monoesters), the mutant E1 (49.1% and 48.1%) and Chlorococcum sp. (18.0% and 58.6%).