956 resultados para Coherent combination
Resumo:
Delineating brain tumor boundaries from magnetic resonance images is an essential task for the analysis of brain cancer. We propose a fully automatic method for brain tissue segmentation, which combines Support Vector Machine classification using multispectral intensities and textures with subsequent hierarchical regularization based on Conditional Random Fields. The CRF regularization introduces spatial constraints to the powerful SVM classification, which assumes voxels to be independent from their neighbors. The approach first separates healthy and tumor tissue before both regions are subclassified into cerebrospinal fluid, white matter, gray matter and necrotic, active, edema region respectively in a novel hierarchical way. The hierarchical approach adds robustness and speed by allowing to apply different levels of regularization at different stages. The method is fast and tailored to standard clinical acquisition protocols. It was assessed on 10 multispectral patient datasets with results outperforming previous methods in terms of segmentation detail and computation times.
Resumo:
We report on coherent spatiotemporal imaging of single-cycle THz waves in frustrated total internal reflection geometry. Our technique yields images of the spatiotemporal electric field distribution before and after tunneling through an air gap in between two LiNbO3 crystals. Measurements of the reflected and the transmitted THz waveforms for different tunnel distances allow for a direct comparison with results from a causal linear dispersion theory and excellent agreement is found.
Resumo:
The risk of Hodgkin lymphoma (HL) is increased in patients infected with HIV-1. We studied the incidence and outcomes of HL, and compared CD4⁺ T-cell trajectories in HL patients and controls matched for duration of combination antiretroviral therapy (cART). A total of 40 168 adult HIV-1-infected patients (median age, 36 years; 70% male; median CD4 cell count, 234 cells/μL) from 16 European cohorts were observed during 159 133 person-years; 78 patients developed HL. The incidence was 49.0 (95% confidence interval [CI], 39.3-61.2) per 100,000 person-years, and similar on cART and not on cART (P = .96). The risk of HL declined as the most recent (time-updated) CD4 count increased: the adjusted hazard ratio comparing more than 350 with less than 50 cells/μL was 0.27 (95% CI, 0.08-0.86). Sixty-one HL cases diagnosed on cART were matched to 1652 controls: during the year before diagnosis, cases lost 98 CD4 cells (95% CI, -159 to -36 cells), whereas controls gained 35 cells (95% CI, 24-46 cells; P < .0001). The incidence of HL is not reduced by cART, and patients whose CD4 cell counts decline despite suppression of HIV-1 replication on cART may harbor HL.
Resumo:
Introduction Adequate migration and differentiation of mesenchymal stem cells is essential for regeneration of large bone defects. To achieve this, modern graft materials are becoming increasingly important. Among them, electrospun nanofiber scaffolds are a promising approach, because of their high physical porosity and potential to mimic the extracellular matrix (ECM). Materials and Methods The objective of the present study was to examine the impact of electrospun PLLA nanofiber scaffolds on bone formation in vivo, using a critical size rat calvarial defect model. In addition we analyzed whether direct incorporation of bone morphogenetic protein 2 (BMP-2) into nanofibers could enhance the osteoinductivity of the scaffolds. Two critical size calvarial defects (5 mm) were created in the parietal bones of adult male Sprague-Dawley rats. Defects were either (1) left unfilled, or treated with (2) bovine spongiosa, (3) PLLA scaffolds alone or (4) PLLA/BMP-2 scaffolds. Cranial CT-scans were taken at fixed intervals in vivo. Specimens obtained after euthanasia were processed for histology, histomorphometry and immunostaining (Osteocalcin, BMP-2 and Smad5). Results PLLA scaffolds were well colonized with cells after implantation, but only showed marginal ossification. PLLA/BMP-2 scaffolds showed much better bone regeneration and several ossification foci were observed throughout the defect. PLLA/BMP-2 scaffolds also stimulated significantly faster bone regeneration during the first eight weeks compared to bovine spongiosa. However, no significant differences between these two scaffolds could be observed after twelve weeks. Expression of osteogenic marker proteins in PLLA/BMP-2 scaffolds continuously increased throughout the observation period. After twelve weeks osteocalcin, BMP-2 and Smad5 were all significantly higher in the PLLA/BMP-2 group than in all other groups. Conclusion Electrospun PLLA nanofibers facilitate colonization of bone defects, while their use in combination with BMP-2 also increases bone regeneration in vivo and thus combines osteoconductivity of the scaffold with the ability to maintain an adequate osteogenic stimulus.
Resumo:
Background Interferon-gamma release assays (IGRA) are more specific than the tuberculin skin test (TST) for the diagnosis of Mycobacterium tuberculosis infection. Data on sensitivity are controversial in HIV infection. Methods IGRA (T-SPOT.TB) was performed using lymphocytes stored within 6 months before culture-confirmed tuberculosis was diagnosed in HIV-infected individuals in the Swiss HIV Cohort Study. Results 64 individuals (69% males, 45% of non-white ethnicity, median age 35 years (interquartile range [IQR] 31-42), 28% with prior AIDS) were analysed. Median CD4 cell count was 223 cells/μl (IQR 103-339), HIV-RNA was 4.7 log10 copies/mL (IQR 4.3-5.2). T-SPOT.TB resulted positive in 25 patients (39%), negative in 18 (28%) and indeterminate in 21 (33%), corresponding to a sensitivity of 39% (95% CI 27-51%) if all test results were considered, and 58% (95% CI 43-74%) if indeterminate results were excluded. Sensitivity of IGRA was independent of CD4 cell count (p = 0.698). Among 44 individuals with available TST, 22 (50%) had a positive TST. Agreement between TST and IGRA was 57% (kappa = 0.14, p = 0.177), and in 34% (10/29) both tests were positive. Combining TST and IGRA (at least one test positive) resulted in an improved sensitivity of 67% (95% CI 52-81%). In multivariate analysis, older age was associated with negative results of TST and T-SPOT.TB (OR 3.07, 95% CI 1,22-7.74, p = 0.017, per 10 years older). Conclusions T-SPOT.TB and TST have similar sensitivity to detect latent TB in HIV-infected individuals. Combining TST and IGRA may help clinicians to better select HIV-infected individuals with latent tuberculosis who qualify for preventive treatment.
Resumo:
Primate multisensory object perception involves distributed brain regions. To investigate the network character of these regions of the human brain, we applied data-driven group spatial independent component analysis (ICA) to a functional magnetic resonance imaging (fMRI) data set acquired during a passive audio-visual (AV) experiment with common object stimuli. We labeled three group-level independent component (IC) maps as auditory (A), visual (V), and AV, based on their spatial layouts and activation time courses. The overlap between these IC maps served as definition of a distributed network of multisensory candidate regions including superior temporal, ventral occipito-temporal, posterior parietal and prefrontal regions. During an independent second fMRI experiment, we explicitly tested their involvement in AV integration. Activations in nine out of these twelve regions met the max-criterion (A < AV > V) for multisensory integration. Comparison of this approach with a general linear model-based region-of-interest definition revealed its complementary value for multisensory neuroimaging. In conclusion, we estimated functional networks of uni- and multisensory functional connectivity from one dataset and validated their functional roles in an independent dataset. These findings demonstrate the particular value of ICA for multisensory neuroimaging research and using independent datasets to test hypotheses generated from a data-driven analysis.
Resumo:
The aim of this study has been to compare the clinical and radiographic outcome of periodontal intrabony defect treatment by open flap debridement alone or in combination with nanocrystalline hydroxyapatite bone substitute application. Thirty patients diagnosed with advanced periodontits were divided into two groups: the control group (OFD), in which an open flap debridement procedure was performed and the test group (OFD+NHA), in which defects were additionally filled with nanocrystalline hydroxyapatite bone substitute material. Plaque index (PI), gingival index (GI), bleeding on probing (BOP), pocket depth (PD), gingival recession (GR) and clinical attachment level (CAL) were measured prior to, then 6 and 12months following treatment. Radiographic depth and width of defects were also evaluated. There were no differences in any clinical and radiographic parameters between the examined groups prior to treatment. After treatment, BOP, GI, PD, CAL, radiographic depth and width parameter values improved statistically significantly in both groups. The PI value did not change, but the GR value increased significantly after treatment. There were no statistical differences in evaluated parameters between OFD and OFD+NHA groups 6 and 12months after treatment. Within the limits of the study, it can be concluded that the additional use of nanocrystalline hydroxyapatite bone substitute material after open flap procedure does not improve clinical and radiographic treatment outcome.
Resumo:
Bioresorbable collagen membranes are routinely utilized in guided bone regeneration to selectively direct the growth and repopulation of bone cells in areas of insufficient volume. However, the exact nature by which alveolar osteoblasts react to barrier membranes as well as the effects following the addition of growth factors to the membranes are still poorly understood. The objective of the present study was therefore to investigate the effect of a bioresorbable collagen membrane soak-loaded in growth factors bone morphogenetic protein 2 (BMP2) or transforming growth factor β1 (TGFβ1) on osteoblast adhesion, proliferation, and differentiation.