835 resultados para Closed-loop system
Resumo:
[EN]Active Vision Systems can be considered as dynamical systems which close the loop around artificial visual perception, controlling camera parameters, motion and also controlling processing to simplify, accelerate and do more robust visual perception. Research and Development in Active Vision Systems [Aloi87], [Bajc88] is a main area of interest in Computer Vision, mainly by its potential application in different scenarios where real-time performance is needed such as robot navigation, surveillance, visual inspection, among many others. Several systems have been developed during last years using robotic-heads for this purpose...
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Global environmental changes (GEC) such as climate change (CC) and climate variability have serious impacts in the tropics, particularly in Africa. These are compounded by changes in land use/land cover, which in turn are driven mainly by economic and population growth, and urbanization. These factors create a feedback loop, which affects ecosystems and particularly ecosystem services, for example plant-insect interactions, and by consequence agricultural productivity. We studied effects of GEC at a local level, using a traditional coffee production area in greater Nairobi, Kenya. We chose coffee, the most valuable agricultural commodity worldwide, as it generates income for 100 million people, mainly in the developing world. Using the coffee berry borer, the most serious biotic threat to global coffee production, we show how environmental changes and different production systems (shaded and sun-grown coffee) can affect the crop. We combined detailed entomological assessments with historic climate records (from 1929-2011), and spatial and demographic data, to assess GEC's impact on coffee at a local scale. Additionally, we tested the utility of an adaptation strategy that is simple and easy to implement. Our results show that while interactions between CC and migration/urbanization, with its resultant landscape modifications, create a feedback loop whereby agroecosystems such as coffee are adversely affected, bio-diverse shaded coffee proved far more resilient and productive than coffee grown in monoculture, and was significantly less harmed by its insect pest. Thus, a relatively simple strategy such as shading coffee can tremendously improve resilience of agro-ecosystems, providing small-scale farmers in Africa with an easily implemented tool to safeguard their livelihoods in a changing climate.
Resumo:
Objective: In the setting of the increasing use of closed systems for reconstitution and preparation of these drugs, we intend to analyze the correct use of these systems in the Hospital Pharmacy, with the objective to minimize the risks of exposure not only for those professionals directly involved, but also for all the staff in the unit, taking also into account efficiency criteria. Method: Since some systems protect against aerosol formation but not from vapours, we decided to review which cytostatics should be prepared using an awl with an air inlet valve, in order to implement a new working procedure. We reviewed the formulations available in our hospital, with the following criteria: method of administration, excipients, and potential hazard for the staff handling them. We measured the diameters of the vials. We selected drugs with Level 1 Risk and also those including alcohol-based excipients, which could generate vapours. Outcomes: Out of the 66 reviewed formulations, we concluded that 11 drugs should be reconstituted with this type of awl: busulfan, cabazitaxel, carmustine, cyclophosphamide, eribulin, etoposide, fotemustine, melphalan, paclitaxel, temsirolimus and thiotepa; these represented an 18% of the total volume of formulations. Conclusions: The selection of healthcare products must be done at the Hospital Pharmacy, because the use of a system with an air valve inlet only for those drugs selected led to an outcome of savings and a more efficient use of materials. In our experience, we confirmed that the use of the needle could only be avoided when the awl could adapt to the different formulations of cytostatics, and this is only possible when different types of awls are available. Besides, connections were only really closed when a single awl was used for each vial. The change in working methodology when handling these drugs, as a result of this study, will allow us to start different studies about environmental contamination as a future line of work.
Resumo:
The OPIT program is briefly described. OPIT is a basis-set-optimising, self-consistent field, molecular orbital program for calculating properties of closed-shell ground states of atoms and molecules. A file handling technique is then put forward which enables core storage to be used efficiently in large FORTRAN scientific applications programs. Hashing and list processing techniques, of the type frequently used in writing system software and computer operating systems, are here applied to the creation of data files (integral label and value lists etc.). Files consist of a chained series of blocks which may exist in core or on backing store or both. Efficient use of core store is achieved and the processes of file deletion, file re-writing and garbage collection of unused blocks can be easily arranged. The scheme is exemplified with reference to the OPIT program. A subsequent paper will describe a job scheduling scheme for large programs of this sort.
Resumo:
A battery powered air-conditioning device was developed to provide an improved thermal comfort level for individuals in inadequately cooled environments. This device is a battery powered air-conditioning system with the phase change material (PCM) for heat storage. The condenser heat is stored in the PCM during the cooling operation and is discharged while the battery is charged by using the vapor compression cycle as a thermosiphon loop. The main focus of the current research was on the development of the cooling system. The cooling capacity of the vapor compression cycle measured was 165.6 W with system COP at 2.85. It was able to provide 2 hours cooling without discharging heat to the ambient. The PCM was recharged in nearly 8 hours under thermosiphon mode.
Resumo:
Early water resources modeling efforts were aimed mostly at representing hydrologic processes, but the need for interdisciplinary studies has led to increasing complexity and integration of environmental, social, and economic functions. The gradual shift from merely employing engineering-based simulation models to applying more holistic frameworks is an indicator of promising changes in the traditional paradigm for the application of water resources models, supporting more sustainable management decisions. This dissertation contributes to application of a quantitative-qualitative framework for sustainable water resources management using system dynamics simulation, as well as environmental systems analysis techniques to provide insights for water quality management in the Great Lakes basin. The traditional linear thinking paradigm lacks the mental and organizational framework for sustainable development trajectories, and may lead to quick-fix solutions that fail to address key drivers of water resources problems. To facilitate holistic analysis of water resources systems, systems thinking seeks to understand interactions among the subsystems. System dynamics provides a suitable framework for operationalizing systems thinking and its application to water resources problems by offering useful qualitative tools such as causal loop diagrams (CLD), stock-and-flow diagrams (SFD), and system archetypes. The approach provides a high-level quantitative-qualitative modeling framework for "big-picture" understanding of water resources systems, stakeholder participation, policy analysis, and strategic decision making. While quantitative modeling using extensive computer simulations and optimization is still very important and needed for policy screening, qualitative system dynamics models can improve understanding of general trends and the root causes of problems, and thus promote sustainable water resources decision making. Within the system dynamics framework, a growth and underinvestment (G&U) system archetype governing Lake Allegan's eutrophication problem was hypothesized to explain the system's problematic behavior and identify policy leverage points for mitigation. A system dynamics simulation model was developed to characterize the lake's recovery from its hypereutrophic state and assess a number of proposed total maximum daily load (TMDL) reduction policies, including phosphorus load reductions from point sources (PS) and non-point sources (NPS). It was shown that, for a TMDL plan to be effective, it should be considered a component of a continuous sustainability process, which considers the functionality of dynamic feedback relationships between socio-economic growth, land use change, and environmental conditions. Furthermore, a high-level simulation-optimization framework was developed to guide watershed scale BMP implementation in the Kalamazoo watershed. Agricultural BMPs should be given priority in the watershed in order to facilitate cost-efficient attainment of the Lake Allegan's TP concentration target. However, without adequate support policies, agricultural BMP implementation may adversely affect the agricultural producers. Results from a case study of the Maumee River basin show that coordinated BMP implementation across upstream and downstream watersheds can significantly improve cost efficiency of TP load abatement.
Resumo:
Today, modern System-on-a-Chip (SoC) systems have grown rapidly due to the increased processing power, while maintaining the size of the hardware circuit. The number of transistors on a chip continues to increase, but current SoC designs may not be able to exploit the potential performance, especially with energy consumption and chip area becoming two major concerns. Traditional SoC designs usually separate software and hardware. Thus, the process of improving the system performance is a complicated task for both software and hardware designers. The aim of this research is to develop hardware acceleration workflow for software applications. Thus, system performance can be improved with constraints of energy consumption and on-chip resource costs. The characteristics of software applications can be identified by using profiling tools. Hardware acceleration can have significant performance improvement for highly mathematical calculations or repeated functions. The performance of SoC systems can then be improved, if the hardware acceleration method is used to accelerate the element that incurs performance overheads. The concepts mentioned in this study can be easily applied to a variety of sophisticated software applications. The contributions of SoC-based hardware acceleration in the hardware-software co-design platform include the following: (1) Software profiling methods are applied to H.264 Coder-Decoder (CODEC) core. The hotspot function of aimed application is identified by using critical attributes such as cycles per loop, loop rounds, etc. (2) Hardware acceleration method based on Field-Programmable Gate Array (FPGA) is used to resolve system bottlenecks and improve system performance. The identified hotspot function is then converted to a hardware accelerator and mapped onto the hardware platform. Two types of hardware acceleration methods – central bus design and co-processor design, are implemented for comparison in the proposed architecture. (3) System specifications, such as performance, energy consumption, and resource costs, are measured and analyzed. The trade-off of these three factors is compared and balanced. Different hardware accelerators are implemented and evaluated based on system requirements. 4) The system verification platform is designed based on Integrated Circuit (IC) workflow. Hardware optimization techniques are used for higher performance and less resource costs. Experimental results show that the proposed hardware acceleration workflow for software applications is an efficient technique. The system can reach 2.8X performance improvements and save 31.84% energy consumption by applying the Bus-IP design. The Co-processor design can have 7.9X performance and save 75.85% energy consumption.
Resumo:
Recent advancements in the area of nanotechnology have brought us into a new age of pervasive computing devices. These computing devices grow ever smaller and are being used in ways which were unimaginable before. Recent interest in developing a precise indoor positioning system, as opposed to existing outdoor systems, has given way to much research heading into the area. The use of these small computing devices offers many conveniences for usage in indoor positioning systems. This thesis will deal with using small computing devices Raspberry Pi’s to enable and improve position estimation of mobile devices within closed spaces. The newly patented Orthogonal Perfect DFT Golay coding sequences will be used inside this scenario, and their positioning properties will be tested. After that, testing and comparisons with other coding sequences will be done.